• Saptarshi DasEmail author
  • Indranil Pan
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This chapter gives a brief introduction to generalized non-integer order calculus. The basic definitions and useful realizations are presented briefly along with short explanations as to the physical interpretations of the same. The necessity of the application of fractional calculus in signal processing domain is next highlighted and probable application areas and current research focus in this domain is presented.


Fractional calculus Mittag-Leffler Grunwald-Letnikov Riemann-Liouville 


  1. Baleanu, D., Guven, Z.B., Machado, J.A.T.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, Heidelberg (2010)Google Scholar
  2. Caponetto, R., Dongola, G., Fortuna, L.: Fractional Order Systems: Modeling and Control Applications, vol. 72, World Scientific Publishing, Singapore (2010)Google Scholar
  3. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Heidelberg (2008)Google Scholar
  4. Debnath, L.: Recent applications of fractional calculus to science and engineering. J. Math. Math. Sci. 54, 3413–3442 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  5. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, vol. 2004, Springer, Heidelberg (2010)Google Scholar
  6. Gutierrez, R.E., Rosario, J.M., Tenreiro Machado, J.: Fractional Order Calculus: Basic Concepts and Engineering Applications. Mathematical Problems in Engineering: Theory, Methods and Applications. Art. no. 375858, Hindawi Publishing Corporation (2010). doi:  10.1155/2010/375858
  7. Hilfer, R.: Applications of Fractional Calculus in Physics. vol. 1600, World Scientific, Singapore (2000)zbMATHCrossRefGoogle Scholar
  8. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)Google Scholar
  9. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011). doi: 10.1016/j.cnsns.2010.05.027 MathSciNetCrossRefGoogle Scholar
  10. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2009)Google Scholar
  11. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New Yok (1993)Google Scholar
  12. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu, V.: Fractional-Order Systems and Controls: Fundamentals and Applications. Springer, Heidelberg (2010)Google Scholar
  13. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)Google Scholar
  14. Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers, vol. 10. Springer, Heidelberg (2011)Google Scholar
  15. Ortigueira, M.D., Machado, J.A.T.: Fractional signal processing and applications. Signal Process. 83(11), 2285–2286 (2003). doi: 10.1016/s0165-1684(03)00181-6 CrossRefGoogle Scholar
  16. Ortigueira, M.D., Machado, J.A.T.: Fractional calculus applications in signals and systems. Signal Process. 86(10), 2503–2504 (2006). doi: 10.1016/j.sigpro.2006.02.001 zbMATHCrossRefGoogle Scholar
  17. Ortigueira, M.D., Machado, J.A.T., Trujillo, J.J., Vinagre, B.M.: Fractional signals and systems. Signal Process. 91(3), 349–349 (2011). doi: 10.1016/j.sigpro.2010.08.002 CrossRefGoogle Scholar
  18. Podlubny, I.: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, NewYork (1999)Google Scholar
  19. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4) (2002)Google Scholar
  20. Sabatier, J., Agrawal, O.P., Machado, J.A.T.: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Heidelberg (2007)Google Scholar
  21. Sheng, H., Li, Y., Chen, Y.: Application of numerical inverse Laplace transform algorithms in fractional calculus. J. Frankl. Inst. 348(2), 315–330 (2011). doi: 10.1016/j.jfranklin.2010.11.009 MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of Power Engineering, School of Nuclear Studies and ApplicationsJadavpur UniversityKolkataIndia
  2. 2.Department of Power EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations