Fama, E.F.: The behavior of stock market prices. Journal of business 38(1) (1964)
Google Scholar
Barberis, N., Thaler, R.: A survey of behavioral finance. Handbook of the Economics of Finance 1, 1053–1128 (2003)
CrossRef
Google Scholar
Fung, G., Yu, J., Lam, W.: News sensitive stock trend prediction. Advances in Knowledge Discovery and Data Mining, 481–493 (2002)
Google Scholar
Fung, G.P.C., Yu, J.X., Lu, H.: The predicting power of textual information on financial markets. IEEE Intelligent Informatics Bulletin 5(1), 1–10 (2005)
Google Scholar
Wu, D., Fung, G., Yu, J., Liu, Z.: Integrating Multiple Data Sources for Stock Prediction. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 77–89. Springer, Heidelberg (2008)
CrossRef
Google Scholar
Wu, D., Fung, G.P.C., Yu, J.X., Pan, Q.: Stock prediction: an event-driven approach based on bursty keywords. Frontiers of Computer Science in China 3(2), 145–157 (2009)
CrossRef
Google Scholar
Ederington, L.H., Lee, J.H.: How markets process information: News releases and volatility. Journal of Finance 48(4), 1161–1191 (1993)
CrossRef
Google Scholar
Engle, R.F., Ng, V.K.: Measuring and testing the impact of news on volatility. Journal of finance 48(5), 1749–1778 (1993)
CrossRef
Google Scholar
Seo, Y.W., Giampapa, J., Sycara, K.: Financial news analysis for intelligent portfolio management. Robotics Institute, Carnegie Mellon University (2004)
Google Scholar
Schumaker, R.P., Chen, H.: Textual analysis of stock market prediction using breaking financial news: The AZFin text system. ACM Transactions on Information Systems (TOIS) 27(2), 12 (2009)
CrossRef
Google Scholar
Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43(1), 59–69 (1982)
MathSciNet
CrossRef
MATH
Google Scholar
Kohonen, T., Somervuo, P.: Self-organizing maps of symbol strings. Neurocomputing 21(1-3), 19–30 (1998)
CrossRef
MATH
Google Scholar
Ultsch, A.: Data mining and knowledge discovery with emergent self-organizing feature maps for multivariate time series. Kohonen Maps 46 (1999)
Google Scholar
Fu, T., Chung, F.L., Ng, V., Luk, R.: Pattern discovery from stock time series using self-organizing maps. In: Workshop Notes of KDD2001 Workshop on Temporal Data Mining, pp. 26–29 (2001)
Google Scholar
Smyth, P.J.: Hidden Markov models for fault detection in dynamic systems (November 7, 1995)
Google Scholar
Pavlidis, T., Horowitz, S.L.: Segmentation of plane curves. IEEE Transactions on Computers 100(23), 860–870 (1974)
MathSciNet
CrossRef
MATH
Google Scholar
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of the ACL-2002 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86 (2002)
Google Scholar
Kim, S.M., Hovy, E.: Determining the sentiment of opinions. In: Proceedings of COLING, vol. 4, pp. 1367–1373 (2004)
Google Scholar
Godbole, N., Srinivasaiah, M., Skiena, S.: Large-scale sentiment analysis for news and blogs. In: ICWSM 2007 (2007)
Google Scholar
Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2(1-2), 1–135 (2008)
CrossRef
Google Scholar
Schumaker, R.P., Chen, H.: A quantitative stock prediction system based on financial news. Information Processing & Management 45(5), 571–583 (2009)
CrossRef
Google Scholar
Feldman, R., Sanger, J.: The text mining handbook (2007)
Google Scholar
Dacorogna, M.M.: An introduction to high-frequency finance (2001)
Google Scholar
Gidófalvi, G., Elkan, C.: Using news articles to predict stock price movements. In: Department of Computer Science and Engineering. University of California, San Diego (2001)
Google Scholar
Tay, F.E.H., Cao, L.: Application of support vector machines in financial time series forecasting. Omega 29(4), 309–317 (2001)
CrossRef
Google Scholar
Cao, L.J., Tay, F.E.H.: Support vector machine with adaptive parameters in financial time series forecasting. IEEE Transactions on Neural Networks 14(6), 1506–1518 (2004)
CrossRef
Google Scholar
Sonnenburg, S., Rätsch, G., Henschel, S., Widmer, C., Behr, J., Zien, A., Bona, F., Binder, A., Gehl, C., Franc, V.: The SHOGUN machine learning toolbox. The Journal of Machine Learning Research 99, 1799–1802 (2010)
MATH
Google Scholar
Ritter, J.R.: Behavioral finance. Pacific-Basin Finance Journal 11(4), 429–437 (2003)
CrossRef
Google Scholar