Evolutionary Game Theory and Complex Networks of Scientific Information

  • Matthias HanauskeEmail author
Part of the Understanding Complex Systems book series (UCS)


The evolution of the socio-economic system of scientific information depend on the decision processes of its underlying system components. The mathematical model to describe the strategic decision of players within a socio-economic game is “game theory”. “Evolutionary game theory” a time dependent dynamical extension of game theory, which itself attempts to mathematically capture behavior in strategic situations in which an individual’s success in making choices depends on the choices of others. Evolutionary game theory focuses on the strategy evolution in populations to explain interdependent decision processes happening in biological or socio-economic systems. This chapter is about evolutionary game theory in the context of complex networks of scientific information. After a general introduction, the framework of evolutionary game theory is described in detail within this chapter. Two applications in respect to the evolution of scientific information are additionally discussed within this chapter.


Nash Equilibrium Evolutionary Game Replicator Dynamic Evolutionary Stable Strategy Coordination Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amann E (1999) Evolutionäre Spieltheorie: Grundlagen und neue Ansätze. Studies in Contemporary Economics. Physica-Verlag, HeidelbergCrossRefGoogle Scholar
  2. Axelrod R (1997) The complexity of cooperation: Agent-based models of conflict and cooperation. Princeton Studies in Complexity. Princeton University Press, Princeton, NJGoogle Scholar
  3. Bernius S, Hanauske M (2007) Open access. Wirtschaftsinformatik 49(6):456–459 (DOI:  10.1007/s11576-007-0098-2)Google Scholar
  4. Bernius S, Hanauske M, Dugall B, König W (2010) Exploring the effects of a transition to open access: Insights from a simulation study. Unpublished manuscript, submitted to the Journal of the American Society for Information Science and Technology (JASIST)Google Scholar
  5. Clemens C, Riechmann T (2006) Evolutionary dynamics in public good games. Comput Econ 28(4):399–420 (DOI:  10.1007/s10614-006-9044-4)Google Scholar
  6. Cressman R (2003) Evolutionary dynamics and extensive form games. Economic Learning and Social Evolution, vol 5. MIT Press, Cambridge, MAGoogle Scholar
  7. Deutsche Forschungsgemeinschaft (2006) Publication strategies in transformation? Results of a study on publishing habits and information acquisition with regard to open access. Wiley-VCH Verlag, Weinheim, available online at the URL:
  8. Dewett T, Denisi AS (2004) Exploring scholarly reputation: It’s more than just productivity. Scientometrics 60(2):249–272 (DOI:  10.1023/B:SCIE.0000027796.55585.61)Google Scholar
  9. Enquist M, Ghirlanda S (2007) Evolution of social learning does not explain the origin of human cumulative culture. J Theor Biol 246(1):129–135 (DOI: 10.1016/j.jtbi.2006.12.022)Google Scholar
  10. Eysenbach (2006) Citation advantage of open access articles. PLoS Biol 4(5):e157 (DOI: 10.1371/journal.pbio.0040157)
  11. Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296(5568):750–752 (DOI:  10.1126/science.1068696)Google Scholar
  12. Guédon JC (2004) The “green” and “gold” roads to open access: The case for mixing and matching. Serials Rev 30(4):315–328 (DOI:  10.1016/j.serrev.2004.09.005), also available online at the URL: Google Scholar
  13. Habermann K, Habermann L (2009) An evolutionary game-theoretic approach to open access. ArXiv preprint
  14. Hanauske M (2009) Neue Entwicklungen in der Evolutionären Spieltheorie. Lecture notes of lectures given at the Université Lumière Lyon 2 in Lyon, France (MINERVE Exchange Program). Available online at the URL:
  15. Hanauske M (2011) Evolutionäre Quanten-Spieltheorie im Kontext sozio-ökonomischer Systeme/Evolutionary quantum game theory in the context of socio-economic systems. PhD-Thesis. Goethe-Universität Frankfurt am Main, Frankfurt am Main. Available online at the URL:
  16. Hanauske M, Bernius S, Dugall B (2007) Quantum game theory and open access publishing. Physica A 382(2):650–664 (DOI:  10.1016/j.physa.2007.04.012), also available as arXiv preprint Google Scholar
  17. Hanauske M, Huber T, Kude T (2010a) Evolutionary quantum game theory and hubs- and spoke-networks. Manuscript in preparationGoogle Scholar
  18. Hanauske M, König W, Dugall B (2010b) Evolutionary quantum game theory and scientific communication. Accepted article at the “Second Brasilian Workshop of the Game Theory Society in honor of JOHN NASH, on the occasion of the 60th anniversary of Nash equilibrium, São Paulo – SP – Brazil July 29 to August 4, 2010”, available online at the URL:
  19. Hanauske M, Kunz J, Bernius S, König W (2009) Doves and hawks in economics revisited: An evolutionary quantum game theory-based analysis of financial crises. Physica A 389(21):5084–5102 (DOI:  10.1016/j.physa.2010.06.007), also available as arXiv preprint
  20. Hanauske M, Schäfer S (2009) Fellow-feeling and cooperation (A quantum game theory-based analysis of a prisoner’s dilemma experiment). Unpublished manuscript, originating from the PhD-seminar “Experimental Economics” organised by Prof. Kosfeld, (available from the author)Google Scholar
  21. Harms W, Skyrms B (2008) Evolution of moral norms. In: Ruse M (ed) Oxford handbook on the philosophy of biology. Oxford University Press, Oxford, Chap 18, pp 434–450 (DOI:  10.1093/oxfordhb/9780195182057.003.0019)
  22. Harnad S, Brody T (2004) Comparing the impact of open access (OA) vs. non-OA articles in the same journals. D-Lib Magazine 10(6) (DOI:  10.1045/june2004-harnad)
  23. Harnad S (2005) Fast-forward on the green road to open access: The case against mixing up green and gold. Ariadne (42), available online at the URL:
  24. Hofbauer J, Sigmund K (2003) Evolutionary game dynamics. Bull Am Math Soc 40(4):479–519 (DOI:  10.1090/S0273-0979-03-00988-1)Google Scholar
  25. Janssen M, Ostrom E (2006) Governing social-ecological systems. In: Tesfatsion L, Judd KL (eds) Handbook of computational economics, Volume 2: Agent-based computational economics. Handbooks in Economics, vol 13. North-Holland, Amsterdam, Chap 30, pp 1465–1509 (DOI: 10.1016/S1574-0021(05)02030-7)
  26. Kerr B, Riley MA, Feldman MW, Bohannan BJM (2002) Local dispersal promotes biodiversity in a real-life game of rock paper scissors. Nature 418(6894):171–174 (DOI:  10.1038/nature00823)Google Scholar
  27. Lawrence S (2001) Free online availability substantially increases a paper’s impact. Nature 411(6837):521 (DOI:  10.1038/35079151)Google Scholar
  28. Miekisz J (2008) Evolutionary game theory and population dynamics. In: Capasso V, Lachowicz M (eds) Multiscale problems in the life sciences: From microscopic to macroscopic: Lectures from the Banach Center and C.I.M.E. Joint Summer School held in Bȩdlewo, September 4–9, 2006. Lecture Notes in Mathematics, vol 1940. Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence, pp 269–316 (DOI: 10.1007/978-3-540-78362-6_5), also available as arXiv preprint
  29. Nowak MA, Sigmund K (2002) Bacterial game dynamics. Nature 418(6894):138–139 (DOI: 10.1038/418138a)Google Scholar
  30. Nowak MA, Sigmund K (2003) Evolutionary dynamics of biological games. Science 303(5659):793–799 (DOI:  10.1126/science.1093411), also available online as International Institute for Applied Systems Analysis (IIASA) Laxenburg interim report IR-04-013 at the URL Google Scholar
  31. Ostrom E (2000) Collective action and the evolution of social norms. J Econ Perspect 14(3):137–158 (DOI: 10.1257/jep.14.3.137, stable JSTOR URL: Scholar
  32. Ostrom E (2009) A general framework for analyzing sustainability of social-ecological systems. Science 325(5939):419–422 (DOI:  10.1126/science.1172133)Google Scholar
  33. Pawlowitsch C (2007) Finite populations choose an optimal language. J Theor Biol 249(3):606–616 (DOI:  10.1016/j.jtbi.2007.08.009)Google Scholar
  34. Sally D (2001) On sympathy and games. J Econ Behav Organ 44(1):1–30 (DOI: 10.1016/S0167-2681(00)00153-0)CrossRefGoogle Scholar
  35. Sandholm WH (2010) Population games and evolutionary dynamics. Economic Learning and Social Evolution. MIT Press, Cambridge, MAGoogle Scholar
  36. Schlee W (2004) Einführung in die Spieltheorie: Mit Beispielen und Aufgaben. Fried. Vieweg & Sohn Verlag, WiesbadenGoogle Scholar
  37. Schroter S, Tite L, Smith R (2005) Perceptions of open access publishing: interviews with journal authors. Br Med J 330(7494):756, 4 pp (DOI:  10.1136/bmj.38359.695220.82)Google Scholar
  38. Sinervo B, Lively C (1996) The rock-paper-scissors game and the evolution of alternative male. Nature 380(6571):240–243 (DOI:  10.1038/380240a0)Google Scholar
  39. Smith JM (1972) Game theory and the evolution of fighting. In: Smith JM On Evolution. Edinburgh University Press, Edinburg, pp 8–28Google Scholar
  40. Smith JM (1974) The theory of games and the evolution of animal conflicts. J Theor Biol 47(1):209–221 (DOI:  10.1016/0022-5193(74)90110-6)Google Scholar
  41. Smith JM (1982) Evolution and the theory of games. Cambridge University Press, CambridgeGoogle Scholar
  42. Smith JM, Price G (1973) The logic of animal conflict. Nature 246(5427):15–18 (DOI: 10.1038/246015a0)Google Scholar
  43. Söllner F (2001) Die Geschichte des ökonomischen Denkens. Springer, BerlinCrossRefGoogle Scholar
  44. Sugden R (2002) Beyond sympathy and empathy: Adam Smith’s concept of fellow-feeling. Econ Philos 18(1):63–87, available online at the URL: Google Scholar
  45. Szabó G, Fáth G (2007) Evolutionary games on graphs. Phys Rep 446(4–6):97–216 (DOI:  10.1016/j.physrep.2007.04.004), also available as arXiv preprint Google Scholar
  46. Turner P, Chao L (1999) Prisoner’s dilemma in an RNA virus. Nature 398(6726):441–443 (DOI: 10.1038/18913)Google Scholar
  47. von Neumann J (1928) Zur Theorie der Gesellschaftsspiele. Mathematische Annalen 100(1):295–300 (DOI:  10.1007/BF01448847) also available online at the URL: Reprinted in: Taub AH (ed) (1963) Collected works of John von Neumann. Volume VI: Theory of games, astrophysics, hydrodynamics and meteorology. Pergamon Press, Oxford, pp 1–26. English translation: (1959) On the theory of games of strategy. In: Tucker AW, Luce RD (eds) Contributions to the theory of games: Volume IV. Annals of Mathematics Studies, vol 40. Princeton University Press, Princeton, NJ, pp 13–42
  48. von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton, NJGoogle Scholar
  49. Weibull J (1995) Evolutionary game theory. MIT Press, Cambridge, MAGoogle Scholar
  50. Zeeman EC (1980) Population dynamics from game theory. In: Nitecki Z, Robinson C (eds) Global theory of dynamical systems. Proceedings of an international conference held at Northwestern University, Evanston, Illinois, June 18–22, 1979. Lecture Notes in Mathematics, Vol 819. Springer, Berlin, pp 471–497 (DOI:  10.1007/BFb0087009)
  51. Zermelo E (1913) Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In: Hobson EW, Love AEH (eds) Proceedings of the fifth international congress of mathematicians (Cambridge, 22–28 August 1912). Cambridge University Press, Cambridge, vol II, pp 501–504, also available online at the URL: English translation: (2010) On an application of chess theory to the theory of the game of chess. In: Ebbinghaus HD, Fraser CG, Kanamori A (eds) Ernst Zermelo: Collected works/Gesammelte Werke: Volume 1/Band 1: Set Theory, Miscellanea/Mengenlehre, Varia. Schriften der Mathematisch-naturwissenschaftlichen Klasse der Heidelberger Akademie der Wissenschaften, vol 21. Springer, Heidelberg, pp 267–273 (DOI:  10.1007/978-3-540-79384-7)

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Information SystemsGoethe-UniversityFrankfurt/MainGermany

Personalised recommendations