Foundations of Relational Artifacts Verification

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6896)


Artifacts are entities characterized by data of interest (constituting the state of the artifact) in a given business application, and a lifecycle, which constrains the artifact’s possible evolutions. In this paper we study relational artifacts, where data are represented by a full fledged relational database, and the lifecycle is described by a temporal/dynamic formula expressed in μ-calculus. We then consider business processes, modeled as a set of condition/action rules, in which the execution of actions (aka tasks, or atomic services) results in new artifact states. We study conformance of such processes wrt the artifact lifecycle as well as verification of temporal/dynamic properties expressed in μ-calculus. Notice that such systems are infinite-state in general, hence undecidable. However, inspired by recent literature on database dependencies developed for data exchange, we present a natural restriction that makes such systems finite-state, and the above problems decidable.


Model Check Transition System Dynamic Constraint Conjunctive Query Line Item 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A framework for lightweight interacting workflow processes. Int. J. of Cooperative Information Systems 10(4), 443–481 (2001)CrossRefGoogle Scholar
  2. 2.
    Abiteboul, S., Bourhis, P., Galland, A., Marinoiu, B.: The AXML artifact model. In: Proc. of TIME 2009, pp. 11–17 (2009)Google Scholar
  3. 3.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley Publ. Co., Reading (1995)zbMATHGoogle Scholar
  4. 4.
    Baier, C., Katoen, J.P., Guldstrand Larsen, K.: Principles of Model Checking. The MIT Press, Cambridge (2008)Google Scholar
  5. 5.
    Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  6. 6.
    Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-centric business process models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Bhattacharya, K., Guttman, R., Lyman, K., Heath, F.F., Kumaran, S., Nandi, P., Wu, F.Y., Athma, P., Freiberg, C., Johannsen, L., Staudt, A.: A model-driven approach to industrializing discovery processes in pharmaceutical research. IBM Systems Journal 44(1), 145–162 (2005)CrossRefGoogle Scholar
  8. 8.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The Mastro system for ontology-based data access. Semantic Web J (2011)Google Scholar
  9. 9.
    Cangialosi, P., De Giacomo, G., De Masellis, R., Rosati, R.: Conjunctive artifact-centric services. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 318–333. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business operations and processes. IEEE Bull. on Data Eng. 32(3), 3–9 (2009)Google Scholar
  11. 11.
    Emerson, E.A.: Automated temporal reasoning about reactive systems. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 41–101. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. Theor. Comp. Sci. 336(1), 89–124 (2005)CrossRefzbMATHGoogle Scholar
  13. 13.
    Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business processes. In: Proc. of ICDT 2009, pp. 225–238 (2009)Google Scholar
  14. 14.
    Hull, R.: Artifact-centric business process models: Brief survey of research results and challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 1152–1163. Springer, Heidelberg (2008)Google Scholar
  15. 15.
    Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base and revising it. In: Proc. of KR 1991, pp. 387–394 (1991)Google Scholar
  16. 16.
    Kolaitis, P.G.: Schema mappings, data exchange, and metadata management. In: Proc. of PODS 2005, pp. 61–75 (2005)Google Scholar
  17. 17.
    Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS 2002, pp. 233–246 (2002)Google Scholar
  18. 18.
    Luckham, D.C., Park, D.M.R., Paterson, M.: On formalised computer programs. J. of Computer and System Sciences 4(3), 220–249 (1970)CrossRefzbMATHGoogle Scholar
  19. 19.
    Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM Systems Journal 42(3), 428–445 (2003)CrossRefGoogle Scholar
  20. 20.
    Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. The MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  21. 21.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Free University of Bozen-BolzanoBolzanoItaly
  2. 2.Sapienza Università di RomaRomeItaly

Personalised recommendations