Advertisement

11.5 Heavy Ion Accelerators for Nuclear Physics

Application of Accelerators and Storage Rings
  • N. AngertEmail author
  • O. Boine-Frankenheim
Part of the Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms book series

Abstract

This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '11.5 Heavy Ion Accelerators for Nuclear Physics' of the Chapter '11 Application of Accelerators and Storage Rings' with the content:

11.5 Heavy Ion Accelerators for Nuclear Physics

11.5.1 Accelerator Facilities for Heavy Ion Nuclear Physics: Background and Aims

11.5.2 Accelerators

11.5.2.1 Introduction

11.5.2.2 Special Issues of Heavy Ion Accelerators and Storage Rings

11.5.2.3 Ion Accelerator Facilities

Keywords

heavy ion accelerator heavy ion nuclear physics 

Notes

Acknowledgments

The authors would like to acknowledge the support and comments from T. Junquera, O. Kamigaito, R. Laxdal, D. Leitner, C.M. Lyneis, C. Scheidenberger and B.M. Sherrill.

References for 11.5

  1. [1]
    S. Hofmann, G. Münzenberg: Rev. Mod. Phys. 72(3) (2000) 733.ADSCrossRefGoogle Scholar
  2. [2]
    Yu.Ts. Oganessian: J. Phys. G 34 (2007) R165.CrossRefGoogle Scholar
  3. [3]
    S. Hofmann: Superheavy Elements, Lect. Notes Phys. 764 (1985) 203, Springer Berlin-Heidelberg.Google Scholar
  4. [4]
    J.R. Alonso: Proc. EPAC’90, Nice (1990) 95.Google Scholar
  5. [5]
    H.W. Schreuder: Proc. EPAC’90, Nice (1990) 82.Google Scholar
  6. [6]
    I. Tanihata, et al.: Phys. Rev. Lett. 55(24) (1985) 2676.ADSCrossRefGoogle Scholar
  7. [7]
    P.G. Hansen, B. Jonson: Europhys. Lett. 4(4) (1987) 409.ADSCrossRefGoogle Scholar
  8. [8]
    H. Geissel, G. Muenzenberg, H. Weick: Nucl. Phys. A 701 (2002) 259.ADSCrossRefGoogle Scholar
  9. [9]
    U. Koester: Eur. Phys. J. A 15 (2002) 255.ADSCrossRefGoogle Scholar
  10. [10]
    O. Kamigaito: Proc. IPAC’10, Kyoto (2010) 16.Google Scholar
  11. [11]
  12. [12]
    C.E. Anderson, K.W. Ehlers: Rev. Sci. Instrum. 27 (1956) 809.ADSCrossRefGoogle Scholar
  13. [13]
    A.S. Pasuyk, Y.P. Tretiakov, S.K. Gorbacher: Dubna-Report 3370 (1967).Google Scholar
  14. [14]
    P. Spaedtke, et al.: Proc. LINAC’96, Geneva (1996) 163,.Google Scholar
  15. [15]
    V.A. Monchinsky, L.V. Kalagin, A.I. Govorov: Laser Part. Beams 14 (1996) 439.ADSCrossRefGoogle Scholar
  16. [16]
    E.D. Donets: Rev. Sci. Instrum. 69(2) (1998) 614.ADSCrossRefGoogle Scholar
  17. [17]
    J. Alessi, et al.: Proc. HIAT’09, Venice (2009) 138.Google Scholar
  18. [18]
    F. Wenander: EBIST2010, J. Instrum. 5 (2010) C10004.CrossRefGoogle Scholar
  19. [19]
    P. Briand, R. Geller, B. Jacquot, C. Jacquot: Nucl. Instrum. Meth. 131 (1975) 407.ADSCrossRefGoogle Scholar
  20. [20]
    R. Geller, B. Jacquot, M. Pontonnier: Phys. Rev. 56(8) (1985) 1505.Google Scholar
  21. [21]
    B.H. Wolf, et al.: Nucl. Instrum. Meth. A 258 (1987) 1.ADSCrossRefGoogle Scholar
  22. [22]
    D. Leitner, C. Lyneis, in: Physics and Technology of Ion Sources, I.G. Brown (ed.), Wiley-VCH (2004) 203.Google Scholar
  23. [23]
    D. Leitner, et al.: Proc. HIAT’09, Venice (2009) 133.Google Scholar
  24. [24]
    H.W. Zhao: Proc. IPAC’10, Kyoto (2010) 31.Google Scholar
  25. [25]
    K. Tinschert, et al.: Proc. ECRIS’08, Chicago (2008) 97.Google Scholar
  26. [26]
    H. Koivisto, et al.: Proc. HIAT’09, Venice, (2009) 128.Google Scholar
  27. [27]
    T. Loew, et al.: Proc. PAC’07, Albuquerque (2007) 1742.Google Scholar
  28. [28]
    S. L. Bogomolov, et al.: Proc. EPAC’98, Stockholm (1998) 1391.Google Scholar
  29. [29]
    S. Gammino, et al.: Proc. Cyclotrons'01, East Lansing (2001) 223.Google Scholar
  30. [30]
    D. Leitner, et al.: Proc. ECRIS’08, Chicago (2008) 2.Google Scholar
  31. [31]
    T. Lamy, J. Angot, C. Fourel, Proc. HIAT’09, Venice (2009) 114.Google Scholar
  32. [32]
    S. Gammino, et al.: Proc. Cyclotrons’04, Tokyo (2004) 256.Google Scholar
  33. [33]
    S. Gammino (ISIBHI collaboration): Proc. Cyclotrons’07, Giardini-Naxos, Sicily (2007) 256.Google Scholar
  34. [34]
    D. Leitner, C. Lyneis, in: Physics and Technology of Ion Sources, I.G. Brown (ed.), Wiley-VCH (2004) 223.Google Scholar
  35. [35]
    R. Hollinger, et al.: Rev. Sci. Instrum. 79 (2008) 02C703.CrossRefGoogle Scholar
  36. [36]
    N. Bohr: Kgl. Danske. Videnskab. Selskab. Mat.- Fys. Medd. 18(8) (1948).Google Scholar
  37. [37]
    H.H. Heckmann, E.L. Hubbard, W.G. Simon: Phys. Rev. 129(3) (1963) 1240.ADSCrossRefGoogle Scholar
  38. [38]
    H.-D. Betz: Rev. Mod. Phys. 44 (1972) 465.ADSCrossRefGoogle Scholar
  39. [39]
    P. Strehl, in: Handbook of Accel. Phys. Eng., A.W. Chao, M. Tigner (eds.), World Sci. (2006) 603.Google Scholar
  40. [40]
    C.D. Moak, et al.: Phys. Rev. Lett. 18(2) (1967) 41.ADSCrossRefGoogle Scholar
  41. [41]
    J.P. Rozet, C. Stéphan, D. Vernhet: Nucl. Instrum. Meth. B 107 (1996) 67.ADSCrossRefGoogle Scholar
  42. [42]
    A. Leon, et al.: Atomic Data & Nuclear Data Tables 69 (1998) 217.MathSciNetADSCrossRefGoogle Scholar
  43. [43]
    H. Ryuto, et al.: Proc. Cyclotrons’07, Berlin (2007) 314.Google Scholar
  44. [44]
    C. Scheidenberger, et al.: Nucl. Instrum. Meth. B 142 (1998) 441.ADSCrossRefGoogle Scholar
  45. [45]
    A.S. Schlachter, et al.: Phys. Rev. A 27(11) (1983) 3372.ADSCrossRefGoogle Scholar
  46. [46]
    V.P. Shevelko, et al.: J. Phys. B 37 (2004) 201.ADSCrossRefGoogle Scholar
  47. [47]
    V.P. Shevelko, et al.: Nucl. Instrum. Meth. B 269 (2011) 1455.ADSCrossRefGoogle Scholar
  48. [48]
    W. Erb: GSI-Report GSI-P-7-78, (1978).Google Scholar
  49. [49]
    A.N. Perumal, et al.: Nucl. Instrum. Meth. B 227 (2005) 251.ADSCrossRefGoogle Scholar
  50. [50]
    H. Okuno, et al.: Phys. Rev. ST Accel. Beams 14 (2011) 033503.ADSCrossRefGoogle Scholar
  51. [51]
    A. Mueller, et al.: Phys. Ser. T 37 (1991) 62.ADSCrossRefGoogle Scholar
  52. [52]
    J. Bosser, et al.: Part. Accel. 63 (1999) 171; S. Baird, et al.: Phys. Lett. B 361 (1995) 184.Google Scholar
  53. [53]
    O. Uwira, et al.: Hyp. Interact. 108, (1997) 149.ADSCrossRefGoogle Scholar
  54. [54]
    E. Mahner: Phys. Rev. ST Accel. Beams 11 (2008) 104801.ADSCrossRefGoogle Scholar
  55. [55]
    H. Kolmus, et al.: J. Vac. Sci. Technol. A 27(2) (2009) 245.CrossRefGoogle Scholar
  56. [56]
    C. Omet, H. Kollmus, H. Reich-Sprenger, P. Spiller: Proc. EPAC’08 Genoa (2008) 295.Google Scholar
  57. [57]
  58. [58]
    H. Geissel, G. Münzenberg, H. Weick: Nucl. Phys. A 701 (2002) 259.ADSCrossRefGoogle Scholar
  59. [59]
  60. [60]
    H. Kamitsubo: Proc. Cyclotrons’84, East Lansing (1984) 257.Google Scholar
  61. [61]
    A. Goto, et al.: Proc. Cyclotrons’89, Berlin (1989) 51.Google Scholar
  62. [62]
    M. Odera, et al.: Nucl. Instrum. Meth. 227 (1984) 187.ADSCrossRefGoogle Scholar
  63. [63]
    Y. Yano: Proc. Cyclotrons’04, Tokyo (2004) 18A1; Y. Yano: Nucl. Instrum. Meth. B 261 (2007) 1009.Google Scholar
  64. [64]
    N. Inabe, et al.: Proc. Cyclotrons’04, Tokyo (2004) 200; T. Mitsumoto, et al.: Proc. Cyclotrons’04, Tokyo (2004) 384.Google Scholar
  65. [65]
    J. Ohnishi, et al.: Proc. Cyclotrons’04, Tokyo (2004)197.Google Scholar
  66. [66]
    H. Okuno, et al.: IEEE Trans. Appl. Supercond. 17 (2007) 1063.ADSCrossRefGoogle Scholar
  67. [67]
    T. Kubo: Nucl. Instrum. Meth. B 204 (2003) 97.ADSCrossRefGoogle Scholar
  68. [68]
    O. Kamigaito, et al.: Proc. Cyclotrons'10, Lanzhou (2010) TUM2CIO01.Google Scholar
  69. [69]
    K. Morita, et al.: J. Phys. Soc. Jpn. 73 (2004) 2593.ADSCrossRefGoogle Scholar
  70. [70]
    T. Ohnishi, et al.: J. Phys. Soc. Jpn. 79 (2010) 073201.ADSCrossRefGoogle Scholar
  71. [71]
    T. Nakamura, et al.: Phys. Rev. Lett. 103 (2009) 262501.ADSCrossRefGoogle Scholar
  72. [72]
    P. Doornenbal, et al.: Phys. Rev. Lett. 103 (2009) 032501.ADSCrossRefGoogle Scholar
  73. [73]
    S. Nishimura, et al.: Phys. Rev. Lett. 106 (2011) 052502.ADSCrossRefGoogle Scholar
  74. [74]
    Ch. Schmelzer, D. Böhne: Proc. Prot. Lin. Accel. Conf. NAL (1970) 981.Google Scholar
  75. [75]
    D. Böhne: Proc. Prot. Lin. Accel. Conf. Los Alamos (1972) 25.Google Scholar
  76. [76]
    D. Böhne: Proc. PAC’77, IEEE Trans. Nucl. Sci. 14(3) (1977) 1070.CrossRefGoogle Scholar
  77. [77]
    N. Angert: Proc. PAC’83, IEEE Trans. Nucl. Sci. 30(4) (1983) 2980.ADSCrossRefGoogle Scholar
  78. [78]
    U. Ratzinger: Proc. LINAC’96, Geneva (1996) 288.Google Scholar
  79. [79]
    L. Dahl: Proc. HIAT’09, Venice (2009) 193.Google Scholar
  80. [80]
    R. Hollinger, et al.: Rev. Sci. Instrum. 79, 02C703 (2008).CrossRefGoogle Scholar
  81. [81]
    N. Angert, et al.: Proc. EPAC’92, Berlin (1992) 167.Google Scholar
  82. [82]
    J. Glatz: Proc. LINAC’86, SLAC-Rep. 303, Stanford (1986) 302.Google Scholar
  83. [83]
    P. Kienle: Nucl. Phys. A 478 (1988) 847.ADSCrossRefGoogle Scholar
  84. [84]
    K. Blasche, et al.: Proc. EPAC’92, Berlin (1992) 9.Google Scholar
  85. [85]
    B. Franzke, et al.: Proc. EPAC’90, Vienna (1990) 49.Google Scholar
  86. [86]
    H. Geissel, et al.: Nucl. Instrum. Meth. B 70 (1992) 286.ADSCrossRefGoogle Scholar
  87. [87]
    B. Franzke, et al.: Proc. EPAC’98, Stockholm (1998) 256.Google Scholar
  88. [88]
    R. Hasse: Phys. Rev. Lett. 83, 3430 (1999).ADSCrossRefGoogle Scholar
  89. [89]
    M. Steck, et al.: Phys. Rev. Lett. 77 (1996) 3803; M. Steck, et al.: Proc. PAC’01, Chicago (2001) 137.ADSCrossRefGoogle Scholar
  90. [90]
    H. Irnich, et al.: Phys. Rev. Lett. 75(23) (1995) 4182.ADSCrossRefGoogle Scholar
  91. [91]
    F. Nolden, et al.: Proc. EPAC’00 Vienna (2000) 1262.Google Scholar
  92. [92]
    M. Hausmann, et al.: Nucl. Instrum. Meth. A 446 (2000) 569.ADSCrossRefGoogle Scholar
  93. [93]
    FAIR Baseline Technical Report, GSI, Darmstadt (2006).Google Scholar
  94. [94]
    FAIR Technical Design Reports, GSI, Darmstadt (2008).Google Scholar
  95. [95]
    D. Kraemer: Proc. EPAC’06, Edinburgh (2006) 205.Google Scholar
  96. [96]
    W. Henning: Proc. EPAC’04 Lucerne (2004).Google Scholar
  97. [97]
    P. Spiller, et al.: Proc. EPAC’08, Genoa (2008) 298.Google Scholar
  98. [98]
    U. Ratzinger, et al.: Proc. LINAC’06, Knoxville (2006) 526.Google Scholar
  99. [99]
    H. Geissel, et al.: Nucl. Instrum. Meth. B 204 (2003) 71.ADSCrossRefGoogle Scholar
  100. [100]
    M. Steck, et al.: Proc. PAC’09, Vancouver (2009) 4246.Google Scholar
  101. [101]
    R. Toelle, et al.: Proc. PAC’07, Albuquerque (2007) 1482.Google Scholar
  102. [102]
    H.G. Blosser: Proc. Cyclotrons’78, Bloomington (1978), Nucl. Sci. NS-26(2) (1979) 2040.CrossRefGoogle Scholar
  103. [103]
    H. Blosser, et al.: Proc. Cyclotrons’86, Tokyo (1986) 157.Google Scholar
  104. [104]
    J.A. Nolen, et al.: Proc. Cyclotrons’89, Berlin (1989) 5.Google Scholar
  105. [105]
    B.M. Sherrill, et al.: Nucl. Instrum. Meth. 56-57(2) (1991) 1106.Google Scholar
  106. [106]
    F. Marti, et al.: Proc. Cyclotrons’01, East Lansing (2001) 64.Google Scholar
  107. [107]
    P. Miller, et al.: Proc. Cyclotrons’04, Tokyo (2004) 62.Google Scholar
  108. [108]
    D.J. Morrissey, et al.: Nucl. Instrum. Meth. B 126 (1997) 316.ADSCrossRefGoogle Scholar
  109. [109]
    J. Stetson, et al.: Proc. Cyclotrons’10, Lanzhou (2010) MOA1CIO01.Google Scholar
  110. [110]
    O. Kester, et al.: Proc. SRF’09, Berlin (2009) 57.Google Scholar
  111. [111]
    R.C. York, Proc. PAC’09, Vancouver (2009) 70.Google Scholar
  112. [112]
  113. [113]
    X. Wu, et al.: Proc. PAC’09, Vancouver (2009) 4947.Google Scholar
  114. [114]
  115. [115]
    G. Gulbekyan, et al.: Proc. Cyclotrons’95, Cape Town (1995) 95.Google Scholar
  116. [116]
    Yu. Oganessian: Eur. Phys. J. A 42 (2009) 361.ADSCrossRefGoogle Scholar
  117. [117]
    V.V. Bashevoy, et al.: Proc. Cyclotrons’01, East Lansing (2001) 387.Google Scholar
  118. [118]
    G. Gulbekyan, et al.: Proc. HIAT’09, Venice (2009) 59.Google Scholar
  119. [119]
    W. Zhan, et al.: Proc. Cyclotrons’07, Catania (2007) 110.Google Scholar
  120. [120]
    P.W. Schmor, et al.: Proc. LINAC’04, Lübeck (2004) 251.Google Scholar
  121. [121]
    R.E. Laxdal, et al.: Proc. PAC’01, Chicago (2001) 3942.Google Scholar
  122. [122]
    R.E. Laxdal: Proc. LINAC’06, Knoxville (2006) 521.Google Scholar
  123. [123]
    V. Zvyagintsev, et al.: Proc. RuPAC’10, Protvino (2010) 292.Google Scholar
  124. [124]
    R. Poirier, et al.: Proc. LINAC’00, Monterey (2000) 1023.Google Scholar
  125. [125]
    R.E. Laxdal, et al.: Proc. LINAC’00, Monterey (2000) 97.Google Scholar
  126. [126]
    R.E. Laxdal, et al.: Proc. PAC’05, Knoxville (2005) 3191.Google Scholar
  127. [127]
    R.E. Laxdal: priv. commun.Google Scholar
  128. [128]
    A. Joubert, et al.: Proc. Cyclotrons’84, East Lansing, (1984) 3.Google Scholar
  129. [129]
    J. Ferme: Proc. Cyclotrons’86, Tokyo (1986) 24.Google Scholar
  130. [130]
    E. Baron, et al.: Proc. Cyclotrons’95, Cape Town (1995) 39.Google Scholar
  131. [131]
    E. Baron, et al.: Nucl. Instrum. Meth. A 362 (1995) 90.ADSCrossRefGoogle Scholar
  132. [132]
    M. Lieuvin, et al.: Proc. Cyclotrons’01, East Lansing (2001) 59.Google Scholar
  133. [133]
    By courtesy of GANIL/SPIRAL2, T. Junquera.Google Scholar
  134. [134]
    F. Chautard, et al.: Proc. EPAC’04, Lucerne (2004) 1270.Google Scholar
  135. [135]
    F. Chautard: Proc.Cyclotrons’10, Lanzhou (2010) MOM2CIO02.Google Scholar
  136. [136]
    M. Lewitowicz: Acta Physica Polonica B 40 (2009) 811.ADSGoogle Scholar
  137. [137]
    T. Junquera (SPIRAL2 Team): Proc. Linac’08, Victoria (2008) 348.Google Scholar
  138. [138]
    R.C. Pardo, et al.: Proc. PAC’09, Vancouver (2009) 65.Google Scholar
  139. [139]
    M. Pasini (HIE-ISOLDE design team): Proc. SRF’09, Berlin (2009) 924.Google Scholar
  140. [140]
    I. Tanihata: Nucl. Instrum. Meth. B 266 (2008) 4067.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.GSIDarmstadtGermany
  2. 2.Institut für Theorie Elektromagnetischer FelderTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations