Skip to main content

Nectar Secretion: Its Ecological Context and Physiological Regulation

  • Chapter
  • First Online:
Secretions and Exudates in Biological Systems

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 12))

Abstract

Plants secrete nectar to attract pollinators and indirect defenders. The chemical contents of both floral and extrafloral nectar appear adapted to attract and nourish these two classes of animal mutualists. Being rich in sugars and amino acids, however, nectar also requires protection from nectar robbers and infecting micro-organisms. This role is mainly fulfilled by nectar proteins (nectarins) and by secondary compounds such as alkaloids. Although much on the chemical ecology of nectar and the phenotypic patterns of its secretion is known, we have only limited knowledge on the molecular control of the synthesis of nectar components and of nectar secretion. Likewise, carbohydrates are uploaded from the phloem into the nectariferous tissue, where they might move via an apoplastic or a vesicle-bound, symplastic pathway. Cell wall invertases play a central role in creating the required source–sink relations and controlling the sucrose/hexose ratio of nectars. No information exits on the sites of synthesis of non-carbohydrate nectar components such as proteins and alkaloids, although it appears likely that at least the bulk of nectarins is synthesized in the nectariferous tissue itself. Most of the common model species do not depend on nectar secretion, and it might be this fact that has hindered nectar research over the last 50 years. We recommend the use of contemporary “omics” techniques in comparative approaches to understand how plants synthesize and secrete nectar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420

    Google Scholar 

  • Adler LS, Irwin RE (2005) Ecological costs and benefits of defenses in nectar. Ecology 86:2968–2978

    Google Scholar 

  • Adler LS, Wink M, Distl M, Lentz AJ (2006) Leaf herbivory and nutrients increase nectar alkaloids. Ecol Lett 9:960–967

    PubMed  Google Scholar 

  • Agthe C (1951) Über die physiologische Herkunft des Pflanzennektars. Ber schweiz Bot Ges 61:240–274

    CAS  Google Scholar 

  • Arumugasamy K, Subramanian RB, Inamdar JA (1990) Structure, ontogeny and histochemistry of cyathial nectaries in Euphorbia heterophylla L. (Euphorbiaceae). Acta Soc Bot Polon 59:3–8

    CAS  Google Scholar 

  • Baker HG (1977) Non-sugar chemical constituents of nectar. Apidologie 8:349–356

    Google Scholar 

  • Baker HG, Baker I (1975) Studies of nectar-constitution and pollinator-plant coevolution. In: Gilbert F, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, pp 100–140

    Google Scholar 

  • Baker HG, Baker I (1982) Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In: Nitecki M (ed) Biochemical aspects of evolutionary biology. University of Chicago Press, Chicago, pp 131–171

    Google Scholar 

  • Baker HG, Baker I (1983) A brief historical review of the chemistry of floral nectar. Columbia University Press, New York

    Google Scholar 

  • Baker HG, Opler PA, Baker I (1978) A comparison of the amino acid complements of floral and extrafloral nectars. Bot Gaz 139:322–332

    CAS  Google Scholar 

  • Belt T (1874) The naturalist in Nicaragua. J.M. Dent and Sons, London

    Google Scholar 

  • Benner U, Schnepf E (1975) Die Morphologie der Nektarauscheidung bei Bromeliaceen: Beteiligung des Golgi-Apparates. Protoplasma 85:337–349

    Google Scholar 

  • Bentley BL (1977) Extrafloral nectaries and protection by pugnacious bodyguards. Annu Rev Ecol Syst 8:407–427

    CAS  Google Scholar 

  • Bernadello G (2007) A systematic survey of floral nectaries. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht

    Google Scholar 

  • Blüthgen N, Fiedler K (2004) Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. J Anim Ecol 73:155–166

    Google Scholar 

  • Bonnier G (1878) Les nectaires Annales des Sciences Naturelles. Botanique 8:5–12

    Google Scholar 

  • Bowman JL, Smyth DR (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387–2396

    PubMed  CAS  Google Scholar 

  • Brandenburg A (2009) The effect of nectar reduction in Petunia axillaris on foraging and pollination behavior of nocturnal hawkmoths, observed in laboratory and field behavioral assays. PhD thesis. University of Neuchâtel, Neuchâtel, Switzerland, pp 153

    Google Scholar 

  • Brandenburg A, Dell‘Olivo A, Bshary R, Kuhlemeier C (2009) The sweetest thing: advances in nectar research. Curr Opin Plant Biol 12:486–490

    PubMed  Google Scholar 

  • Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4:277–287

    Google Scholar 

  • Buxbaum F (1927) Zur Frage des Eiweißgehaltes des Nektars. Planta (Berlin) 4:818–821

    Google Scholar 

  • Carter C, Thornburg RW (2004) Is the nectar redox cycle a floral defense against microbial attack? Trends Plant Sci 9:320–324

    PubMed  CAS  Google Scholar 

  • Carter C, Graham R, Thornburg RW (1999) Nectarin I is a novel, soluble germin-like protein expressed in the nectar of Nicotiana sp. Plant Mol Biol 41:207–216

    PubMed  CAS  Google Scholar 

  • Carter C et al (2007) Tobacco nectaries express a novel NADPH oxidase implicated in the defense of floral reproductive tissues against microorganisms. Plant Physiol 143:389–399

    PubMed  CAS  Google Scholar 

  • Carter C et al (2006) A novel role for proline in plant floral nectars. Naturwissenschaften 93:72–79

    PubMed  CAS  Google Scholar 

  • Castellanos MC, Wilson P, Thomson JD (2002) Dynamic nectar replenishment in flowers of Penstemon (Scrophulariaceae). Am J Bot 89:111–118

    PubMed  Google Scholar 

  • Cawoy V, Kinet JM, Jacquemart AL (2008) Morphology of nectaries and biology of nectar production in the distylous species Fagopyrum esculentum. Ann Bot 102:675–684

    PubMed  Google Scholar 

  • Chamberlain SA, Holland JN (2009) Quantitative synthesis of context dependency in ant-plant protection mutualisms. Ecology 90:2384–2392

    PubMed  Google Scholar 

  • Corbet SA, Delfosse ES (1984) Honeybees and the nectar of Echium plantagineum L. in south-eastern Australia. Aust J Ecol 9:125–139

    Google Scholar 

  • D’Amato F (1984) The role of polyploidy in reproductive organ tissue. In: Johri BM (ed) Embryology of Angiosperms. Springer, Berlin, Germany, pp 519–556

    Google Scholar 

  • Darwin F (1876) On the glandular bodies on Acacia sphaerocephala and Cecropia peltata serving as food for ants. With an Appendix on the nectar-glands of the common brake fern, Pteris Aquilina. Bot J Linn Soc Lond 15:398–409

    Google Scholar 

  • Davidson DW, McKey D (1993) The evolutionary ecology of symbiotic ant-plant relationships. J Hym Res 2:13–83

    Google Scholar 

  • Davis AR (2003) Influence of elevated CO2 and ultraviolet-B radiation levels on floral nectar production: a nectary-morphological perspective. Plant Syst Evol 238:169–181

    CAS  Google Scholar 

  • Davis AR, Gunning BES (1992) The modified stomata of the floral nectary of Vicia faba L. 1. Development, anatomy and ultrastucture. Protoplasma 166:134–152

    Google Scholar 

  • Davis AR, Gunning BES (1993) The modified stomata of the floral nectary of Vicia faba L. 3. Physiological aspects, including comparisons with foliar stomata. Bot Acta 106:241–253

    CAS  Google Scholar 

  • Davis AR, Peterson RL, Shuel RW (1988) Vasculature and ultrastructure of the floral and stipular nectaries of Vicia faba (Leguminosae). Can J Bot 66:1435–1448

    Google Scholar 

  • Davis AR, Pylatuik JD, Paradis JC, Low NH (1998) Nectar-carbohydrate production and composition vary in relation to nectary anatomy and location within individual flowers of several species of Brassicaceae. Planta 205:305–318

    PubMed  CAS  Google Scholar 

  • de la Barrera E, Nobel P (2004) Nectar: properties, floral aspects, and speculations on origin. Trends Plant Sci 9:65–69

    PubMed  Google Scholar 

  • Delpino F (1874) Rapporti tra insetti e nettari extranuziali nelle plante. Boll Soc Entomol ital 6:234–239

    Google Scholar 

  • Delpino F (1886) Funzione mirmecofila nel regno vegetale. Mem R Accad Sci Bologna 4:215–323

    Google Scholar 

  • Díaz-Castelazo C, Rico-Gray V, Ortega F, Angeles G (2005) Morphological and secretory characterization of extrafloral nectaries in plants of Coastal Veracruz, Mexico. Ann Bot 96:1175–1189

    PubMed  Google Scholar 

  • Doak P, Wagner D, Watson A (2007) Variable extrafloral nectary expression and its consequences in quaking aspen. Can J Bot 85:1–9

    Google Scholar 

  • Durkee LT (1982) The floral and extra-floral nectaries of Passiflora. II. The extra-floral nectary. Am J Bot 69:1420–1428

    Google Scholar 

  • Durkee LT, Gaal DJ, Reisner WH (1981) The floral and extra-floral nectaries of Passiflora.I. The floral nectary. Am J Bot 68:453–462

    Google Scholar 

  • Elias TE, Rozich WR, Newcombe L (1975) The foliar and floral nectaries of Turnera ulmifolia L. Am J Bot 62:570–576

    Google Scholar 

  • Elias TS (1983) Extrafloral nectaries: their structure and distribution. In: Bentley B, Elias TS (eds) The biology of nectaries. Columbia University Press, New York, NY, USA, pp 174–203

    Google Scholar 

  • Fahn A (1979) Ultrastructure of nectaries in relation to nectar secretion. Am J Bot 66:977–985

    CAS  Google Scholar 

  • Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257

    Google Scholar 

  • Fahn A, Rachmilevitz T (1970) Ultrastructure and nectar secretion in Lonicera japonica. In: Robson NKB, Cutler DF, Gregory M (eds) New research in plant anatomy. Academic, London, UK, pp 51–56

    Google Scholar 

  • Fahn A, Rachmilevitz T (1979) Ultrastructure and nectar secretion in Lonicera japonica. In: Robson NKB, Cutler DF, Gregory M (eds) New research in plant anatomy. Academic, London, pp 51–56

    Google Scholar 

  • Frey-Wyssling A, Häusermann E (1960) Deutung der gestaltlosen Nektarien. Ber schweiz Bot Ges 70:150–162

    Google Scholar 

  • Frey-Wyssling A, Zimmermann M, Maurizio A (1954) Über den enzymatischen Zuckerumbau in Nektarien. Experientia 10:490–491

    PubMed  CAS  Google Scholar 

  • Gaffal KP, Friedrichs GJ, El-Gammal S (2007) Ultrastructural evidence for a dual function of the phloem and programmed cell death in the floral nectary of Digitalis purpurea. Ann Bot 99:593–607

    PubMed  Google Scholar 

  • Gaffal KP, Heimler W, el-Gammal S (1998) The floral nectary of Digitalis purpurea L., structure and nectar secretion. Ann Bot 81:251–262

    Google Scholar 

  • Gill FB (1988) Effects of nectar removal on nectar accumulation in flowers of Heliconia imbricata (Heliconiaceae). Biotropica 20:169–171

    Google Scholar 

  • González-Teuber M, Heil M (2009a) Nectar chemistry is tailored for both attraction of mutualists and protection from exploiters. Plant Signal Behav 4:809–813

    PubMed  Google Scholar 

  • González-Teuber M, Heil M (2009b) The role of extrafloral nectar amino acids for the preferences of facultative and obligate ant mutualists. J Chem Ecol 35:459–468

    PubMed  Google Scholar 

  • González-Teuber M et al (2009) Pathogenesis-related proteins protect extrafloral nectar from microbial infestation. Plant J 58:464–473

    PubMed  Google Scholar 

  • González-Teuber M et al (2010) Glucanases and chitinases as causal agents in the protection of Acacia extrafloral nectar from infestation by phytopathogens. Plant Physiol 152:1705–1715

    PubMed  Google Scholar 

  • Hampton M et al (2010) Identification of differential gene expression in Brassica rapa nectaries through expressed sequence tag analysis. PLoS One 5:e8782

    PubMed  Google Scholar 

  • Heil M (2004) Induction of two indirect defences benefits Lima bean (Phaseolus lunatus, Fabaceae) in nature. J Ecol 92:527–536

    Google Scholar 

  • Heil M (2007) Indirect defence – recent developments and open questions. In: Lüttge U, Beyschlag W, Murata J (eds) Progress in Botany, vol 69. Springer, Berlin, Heidelberg, New York, pp 360–395

    Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytol 178:41–61

    PubMed  CAS  Google Scholar 

  • Heil M (2009) Damaged-self recognition in plant herbivore defence. Trends Plant Sci 14:356–363

    PubMed  CAS  Google Scholar 

  • Heil M (2011) Nectar: generation, regulation and ecological functions. Trends Plant Sci 16:191–200

    PubMed  CAS  Google Scholar 

  • Heil M, McKey D (2003) Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu Rev Ecol Evol Syst 34:425–453

    Google Scholar 

  • Heil M, Fiala B, Baumann B, Linsenmair KE (2000) Temporal, spatial and biotic variations in extrafloral nectar secretion by Macaranga tanarius. Funct Ecol 14:749–757

    Google Scholar 

  • Heil M et al (2001) Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Proc Natl Acad Sci USA 98:1083–1088

    PubMed  CAS  Google Scholar 

  • Heil M et al (2004) Evolutionary change from induced to constitutive expression of an indirect plant resistance. Nature 430:205–208

    PubMed  CAS  Google Scholar 

  • Heil M, Rattke J, Boland W (2005) Post-secretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism. Science 308:560–563

    PubMed  CAS  Google Scholar 

  • Heil M et al (2009) Divergent investment strategies of Acacia myrmecophytes and the coexistence of mutualists and exploiters. Proc Natl Acad Sci USA 106:18091–18096

    PubMed  CAS  Google Scholar 

  • Herrera CM, Garcia IM, Perez R (2008) Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology 89:2369–2376

    PubMed  Google Scholar 

  • Herrera CM, De Vega C, Canto A, Pozo MI (2009) Yeasts in floral nectar: a quantitative survey. Ann Bot 103:1415–1423

    PubMed  Google Scholar 

  • Heyneman A, Colwell R, Naeem S, Dobkin D (1991) Host plant discrimination: experiments with hummingbirds flower mites. In: Price PW, Lewinson T, Fernades G, Benson W (eds) Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York, USA, pp 455–485

    Google Scholar 

  • Hillwig MS et al (2010) Petunia nectar proteins have ribonuclease activity. J Exp Bot 61:2951–2965

    PubMed  CAS  Google Scholar 

  • Horner H, Cervantes-Martinez T, Healy R, Palmer R (2003) Floral nectary development and structure in Glycine max (Leguminosae). Int J Plant Sci 164:675–690

    Google Scholar 

  • Horner HT et al (2007) Amyloplast to chromoplast conversion in developing ornamental tobacco floral nectaries provides sugar for nectar and antioxidants for protection. Am J Bot 94:12–24

    PubMed  CAS  Google Scholar 

  • Huntzinger M, Karban R, Young TP, Palmer TM (2004) Relaxation of induced indirect defenses of acacias following exclusion of mammalian herbivores. Ecology 85:609–614

    Google Scholar 

  • Irwin RE, Adler LS (2008) Nectar secondary compounds affect self-pollen transfer: Implications for female and male reproduction. Ecology 89:2207–2217

    PubMed  Google Scholar 

  • Ivanoff SS, Keitt GW (1941) Relations of nectar concentration to growth of Erwinia amylovora and fire blight infection of apple and pear blossoms. J Agric Res 62:0733–0743

    CAS  Google Scholar 

  • Johnson SD, Nicolson SW (2008) Evolutionary associations between nectar properties and specificity in bird pollination systems. Biol Lett 4:49–52

    PubMed  Google Scholar 

  • Jürgens G, Geldner N (2002) Protein secretion in plants: from the trans-Golgi network to the outer space. Traffic 3:605–613

    PubMed  Google Scholar 

  • Kaczorowski RL, Juenger TE, Holtsford TR (2008) Heritability and correlation structure of nectar and floral morphology traits in Nicotiana alata. Evolution 62:1738–1750

    PubMed  Google Scholar 

  • Keitt GW, Ivanoff SS (1941) Transmission of fire blight by bees and its relation to nectar concentration of apple and pear blossoms. J Agric Res 62:0745–0753

    CAS  Google Scholar 

  • Kessler D, Baldwin IT (2007) Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J 49:840–854

    PubMed  CAS  Google Scholar 

  • Kessler D, Gase K, Baldwin IT (2008) Field experiments with transformed plants reveal the sense of floral scents. Science 321:1200–1202

    PubMed  CAS  Google Scholar 

  • Kirchoff BK, Kennedy H (1985) Foliar, non-structural nectaries in the Marantaceae. Can J Bot 63:1785–1788

    Google Scholar 

  • Kobayashi S, Asai T, Fujimoto Y, Kohshima S (2008) Anti-herbivore structures of Paulownia tomentosa: morphology, distribution, chemical constituents and changes during shoot and leaf development. Ann Bot 101:1035–1047

    PubMed  CAS  Google Scholar 

  • Kohler A, Leseigneur CDC, Verburgt L, Nicolson SW (2010) Dilute bird nectars: viscosity constrains food intake by licking in a sunbird. Am J Physiol-Regul Integr Comp Physiol 299:R1068–R1074

    PubMed  CAS  Google Scholar 

  • Koptur S, Lawton JH (1988) Interactions among vetches bearing extrafloral nectaries, their biotic protective agents, and herbivores. Ecology 69:278–283

    Google Scholar 

  • Kost C, Heil M (2005) Increased availability of extrafloral nectar reduces herbivory in Lima bean plants (Phaseolus lunatus, Fabaceae). Basic Appl Ecol 6:237–248

    Google Scholar 

  • Kram BW, Carter CJ (2009) Arabidopsis thaliana as a model for functional nectary analysis. Sexual Plant Reprod 22:235–246

    Google Scholar 

  • Kram BW, Bainbridge EA, Perera M, Carter C (2008) Identification, cloning and characterization of a GDSL lipase secreted into the nectar of Jacaranda mimosifolia. Plant Mol Biol 68:173–183

    PubMed  CAS  Google Scholar 

  • Kram BW, Xu WW, Carter CJ (2009) Uncovering the Arabidopsis thaliana nectary transcriptome: investigation of differential gene expression in floral nectariferous tissues. BMC Plant Biol 9:92

    PubMed  Google Scholar 

  • Kromer T, Kessler M, Lohaus G, Schmidt-Lebuhn AN (2008) Nectar sugar composition and concentration in relation to pollination syndromes in Bromeliaceae. Plant Biol 10:502–511

    PubMed  CAS  Google Scholar 

  • Kronestedt-Robards EC, Robards AW, Strak M, Olesen P (1986) Development of trichomes in the Abutilon nectary gland. Nordic J Bot 6:627–639

    Google Scholar 

  • Kuo J, Pate JS (1985) The extrafloral nectaries of cowpea (Vicia unguiculata (L) Wapp). 1. Morphology, anatomy and fine-structure. Planta 166:15–27

    Google Scholar 

  • Lach L, Hobbs RJ, Majer JD (2009) Herbivory-induced extrafloral nectar increases native and invasive ant worker survival. Popul Ecol 51:237–243

    Google Scholar 

  • Lalonde S et al (2003) Phloem loading and unloading of sugars and amino acids. Plant Cell Environ 26:37–56

    CAS  Google Scholar 

  • Lara C, Ornelas JF (2002) Effects of nectar theft by flower mites on hummingbird behavior and the reproductive success of their host plant, Moussonia deppeana (Gesneriaceae). Oikos 96:470–480

    Google Scholar 

  • Limburg DD, Rosenheim JA (2001) Extrafloral nectar consumption and its influence on survival and development of an omnivorous predator, larval Chrysoperla plorabunda (Neuroptera: Chrysopidae). Environ Entomol 30:595–604

    Google Scholar 

  • Liu GY, Ren G, Guirgis A, Thornburg RW (2009) The MYB305 transcription factor regulates expression of nectarin genes in the ornamental tobacco floral nectary. Plant Cell 21:2672–2687

    PubMed  CAS  Google Scholar 

  • Loreti E, De Bellis L, Alpi A, Perata P (2001) Why and how do plant cells sense sugars? Ann Bot 88:803–812

    CAS  Google Scholar 

  • Lüttge U (1961) Über die Zusammensetzung des Nektars und den Mechanismus seiner Sekretion I. Planta 56:189–212

    Google Scholar 

  • Maloof JE, Inouye DW (2000) Are nectar robbers cheaters or mutualists? Ecology 81:2651–2661

    Google Scholar 

  • Martínez del Rio C (1990) Dietary, phylogenetic, and ecological correlates of intestinal sucrase and maltase activity in birds. Physiol Zool 63:987–1011

    Google Scholar 

  • Matile P (1965) Über den Stoffwechsel und die Auxinabhängigkeit der Nektarsekretion. Ber schweiz Bot Ges 66

    Google Scholar 

  • McKim SM et al (2008) The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 135:1537–1546

    PubMed  CAS  Google Scholar 

  • Mitchell RJ (2004) Heritability of nectar traits: why do we know so little? Ecology 85:1527–1533

    Google Scholar 

  • Mondor EB, Addicott JF (2003) Conspicuous extra-floral nectaries are inducible in Vicia faba. Ecol Lett 6:495–497

    Google Scholar 

  • Mondor EB, Tremblay MN, Messing RH (2006) Extrafloral nectary phenotypic plasticity is damage and resource-dependent in Vicia faba. Biol Lett 2:583–585

    PubMed  Google Scholar 

  • Neiland MRM, Wilcock CC (1998) Fruit set, nectar reward, and rarity in the Orchidaceae. Am J Bot 85:1657–1671

    PubMed  CAS  Google Scholar 

  • Nepi M, Stpiczyńska M (2007) Nectar resorption and translocation in Cucurbita pepo L. and Platanthera chlorantha Custer (Rchb.). Plant Biol 9:93–100

    PubMed  CAS  Google Scholar 

  • Nepi M, Stpiczyńska M (2008) The complexity of nectar: secretion and resorption dynamically regulate nectar features. Naturwissenschaften 95:177–184

    PubMed  CAS  Google Scholar 

  • Nepi M, Ciampolini F, Pacini E (1996) Development and ultrastructure of Cucurbita pepo nectaries of male flowers. Ann Bot 78:95–104

    Google Scholar 

  • Nepi M, Guarnieri M, Pacini E (2001) Nectar secretion, reabsorption, and sugar composition in male and female flowers of Cucurbita pepo. Int J Plant Sci 162:353–358

    CAS  Google Scholar 

  • Nepi M, et al. (2007) Dynamics of nectar: new insights from Cucurbita pepo flowers. In: Ninth International Pollination Symposium on Plant-Pollinator Relationships. pp 34–35

    Google Scholar 

  • Nepi M et al (2009) Nectar and pollination drops: how different are they? Ann Bot 104:205–219

    PubMed  CAS  Google Scholar 

  • Ness JH (2006) A mutualism’s indirect costs: the most aggressive plant bodyguards also deter pollinators. Oikos 113:506–514

    Google Scholar 

  • Nicolson SW (2007) Amino acid concentrations in the nectars of southern African bird-pollinated flowers, especially Aloe and Erythrina. J Chem Ecol 33:1707–1720

    PubMed  CAS  Google Scholar 

  • Nicolson SW, Nepi M, Pacini E (2007) Nectaries and nectar. Springer, Doordrecht, The Netherlands

    Google Scholar 

  • Nieuwenhuis-von Uexküll-Güldenband M (1906) Extraflorale Zuckerausscheidungen und Ameisenschutz. Annales du Jardin botanique de Buitenzorg, Ser 2 6:195–328

    Google Scholar 

  • Pacini E, Nepi M (2007) Nectar production and presentation. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, pp 167–205

    Google Scholar 

  • Pacini E, Nepi M, Vesprini JL (2003) Nectar biodiversity: a short review. Plant Syst Evol 238:7–21

    CAS  Google Scholar 

  • Palmer TM et al (2008) Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science 319:192–195

    PubMed  CAS  Google Scholar 

  • Park S, Thornburg RW (2009) Biochemistry of nectar proteins. J Plant Biol 52:27–34

    Google Scholar 

  • Pate JS, Peoples MB, Storer PJ, Atkins CA (1985) The extrafloral nectaries of cowpea (Vigna unguiculata (L.) Walp.) II. Nectar composition, origin of nectar solutes, and nectary functioning. Planta 166:28–38

    CAS  Google Scholar 

  • Patt JM, Pfannenstiel RS (2008) Odor-based recognition of nectar in cursorial spiders. Entomol Exp Applic 127:64–71

    Google Scholar 

  • Pederson MW, Lefevre CW, Wiebe HH (1958) Absorption of C14 labelled sucrose by alfalfa nectaries. Science 127:758–759

    CAS  Google Scholar 

  • Peng YB et al (2004) Nectar production and transportation in the nectaries of the female Cucumis sativus L. flower during anthesis. Protoplasma 224:71–78

    PubMed  CAS  Google Scholar 

  • Petanidou T (2007) Ecological and evolutionary aspects of floral nectars in Mediterranean habitats. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, pp 343–375

    Google Scholar 

  • Petanidou T, Goethals V, Smets E (2000) Nectary structure of Labiatae in relation to their nectar secretion and characteristics in a Mediterranean shrub community-does flowering time matter? Plant Syst Evol 225:103–118

    Google Scholar 

  • Petanidou T, Van Laere A, Ellis WN, Smets E (2006) What shapes amino acid and sugar composition in Mediterranean floral nectars? Oikos 115:155–169

    CAS  Google Scholar 

  • Peumans WJ et al (1997) Lectin and alliinase are the predominant proteins in nectar from leek (Allium porrum L.) flowers. Planta 201:298–302

    PubMed  CAS  Google Scholar 

  • Potter CF, Bertin RI (1988) Amino acids in artificial nectar: feeding preferences of the flesh fly Sarcophaga bullata. Am Midl Nat 120:156–162

    Google Scholar 

  • Pulice CE, Packer AA (2008) Simulated herbivory induces extrafloral nectary production in Prunus avium. Funct Ecol 22:801–807

    Google Scholar 

  • Pyke GH (1991) What does it cost a plant to produce floral nectar? Nature 350:58–59

    Google Scholar 

  • Radhika V et al (2008) Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds. Planta 228:449–457

    PubMed  CAS  Google Scholar 

  • Radhika V, Kost C, Boland W, Martin Heil M (2010) The role of jasmonate signalling in floral nectar secretion. PLoS One 5:e9265

    PubMed  Google Scholar 

  • Raguso RA (2004) Why are some floral nectars scented? Ecology 85:1486–1494

    Google Scholar 

  • Razem FA, Davis AR (1999) Anatomical and ultrastructural changes of the floral nectar of Pisum sativum L. during flower development. Protoplasma 206:57–72

    Google Scholar 

  • Ren G et al (2007a) Expression of starch metabolic genes in the developing nectaries of ornamental tobacco plants. Plant Sci 173:621–637

    CAS  Google Scholar 

  • Ren G et al (2007b) Transient starch metabolism in ornamental tobacco floral nectaries regulates nectar composition and release. Plant Sci 173:277–290

    CAS  Google Scholar 

  • Rogers WE, Siemann E, Lankau RA (2003) Damage induced production of extrafloral nectaries in native and invasive seedlings of Chinese tallow tree (Sapium sebiferum). Am Midl Nat 149:413–417

    Google Scholar 

  • Roitsch T (1999) Source-sink regulation by sugar and stress. Curr Opin Plant Biol 2:198–206

    PubMed  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    PubMed  CAS  Google Scholar 

  • Röse USR, Lewis J, Tumlinson JH (2006) Extrafloral nectar from cotton (Gossypium hirsutum) as a food source for parasitic wasps. Funct Ecol 20:67–74

    Google Scholar 

  • Rudgers JA (2004) Enemies of herbivores can shape plant traits: selection in a facultative ant-plant mutualism. Ecology 85:192–205

    Google Scholar 

  • Ruhlmann JM, Kram BW, Carter CJ (2010) Cell wall invertase 4 is required for nectar production in Arabidopsis. J Exp Bot 61:395–404

    PubMed  CAS  Google Scholar 

  • Sawidis T, Eleftheriou EP, Tsekos I (1987) The floral nectaries of Hibiscus rosasinensis I. Development of the secretory hairs. Ann Bot 59:643–652

    Google Scholar 

  • Sawidis T, Eleftheriou EP, Tsekos I (1989) The floral nectaries of Hibiscus rosasinensis III. A morphometric and ultrastructural approach. Nord J Bot 9:63–71

    Google Scholar 

  • Schmid R (1988) Reproductive versus extra-reproductive nectaries – historical perspective and terminological recommendations. Bot Rev 54:179–232

    Google Scholar 

  • Smets EF, Ronse Decraene LP, Caris P, Rudall PJ (2000) Floral nectaries in monocotyledons: distribution and evolution. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO Publishing, Collingwood, pp 230–240

    Google Scholar 

  • Sobrinho TG, Schoereder JH, Rodrigues LL, Collevatti RG (2002) Ant visitation (Hymenoptera: Formicidae) to extrafloral nectaries increases seed set and seed viability in the tropical weed Triumfetta semitriloba. Sociobiology 39:353–368

    Google Scholar 

  • Southwick EE (1984) Photosynthate allocation to floral nectar: a neglected energy investment. Ecology 65:1775–1779

    CAS  Google Scholar 

  • Stephenson AG (1982) Iridoid gylcosides in the nectar of Catalpa specisoa are unpalatable to nectar thieves. J Chem Ecol 8:1025–1034

    CAS  Google Scholar 

  • Stpiczyńska M (2003a) Floral longevity and nectar secretion of Platanthera chlorantha (Custer) Rchb. (Orchidaceae). Ann Bot 92:191–197

    PubMed  Google Scholar 

  • Stpiczyńska M (2003b) Nectar resorption in the spur of Platanthera chlorantha Custer (Rchb.) Orchidaceae – structural and microautoradiographic study. Plant Syst Evol 238:119–126

    Google Scholar 

  • Stpiczyńska M, Milanesi C, Faleri C, Cresti M (2005) Ultrastructure of the nectar spur of Platanthera chlorantha (Custer) Rchb. (Orchidaceae) during successive stages of nectar secretion. Acta Biologica Cracoviensia Series Botanica 47:111–119

    Google Scholar 

  • Sugiura S, Abe T, Makino S (2006) Loss of extrafloral nectary on an oceanic island plant and its consequences for herbivory. Am J Bot 93:491–495

    PubMed  Google Scholar 

  • Thornburg RW (2007) Molecular biology of the Nicotiana floral nectary. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Heidelberg, pp 265–287

    Google Scholar 

  • Tilman D (1978) Cherries, ants and tent caterpillars: timing of nectar production in relation to susceptibility of caterpillars to ant predation. Ecology 59:686–692

    Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    PubMed  CAS  Google Scholar 

  • Vassilyev AE (2010) On the mechanisms of nectar secretion: revisited. Ann Bot 105:349–354

    PubMed  CAS  Google Scholar 

  • Vesprini JL, Nepi M, Ciampolini F, Pacini E (2008) Holocrine secretion and cytoplasmic content of Helleborus foetidus L. (Ranunculaceae) nectar. Plant Biol 10:268–271

    PubMed  CAS  Google Scholar 

  • Vogel S (1997) Remarkable nectaries: structure, ecology, organophyletic perspectives.I. Substitutive nectaries. Flora 192:305–333

    Google Scholar 

  • Vogel S (1998) Remarkable nectaries: structure, ecology, organophyletic perspectives - II. Nectarioles. Flora 193:1–29

    Google Scholar 

  • von Czarnowski C (1952) Untersuchungen zur Frage der Nektarabsonderung. Arch Geflügelzucht Kleintierk 1:23–44

    CAS  Google Scholar 

  • von Wettstein R (1889) Über die Compositen der österreichisch-ungarischen Flora mit zuckerabscheidenden Hüllschuppen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien. Mathematisch-naturwissenschaftliche Classe 97:570–589

    Google Scholar 

  • Wäckers FL, Wunderlin R (1999) Induction of cotton extrafloral nectar production in response to herbivory does not require a herbivore-specific elicitor. Entomol Exp Applic 91:149–154

    Google Scholar 

  • Wagner RE et al (2007) Proteomic evaluation of gymnosperm pollination drop proteins indicates highly conserved and complex biological functions. Sex Plant Reprod 20:181–189

    CAS  Google Scholar 

  • Weiss M (2001) Vision and learning in some neglected pollinators. In: Chittka L, Thomson JD (eds) Cognitive ecology of pollination, animal behavior and floral evolution. Cambridge University Press, Cambridge, pp 171–190

    Google Scholar 

  • Wenzler M, Holscher D, Oerther T, Schneider B (2008) Nectar formation and floral nectary anatomy of Anigozanthos flavidus: a combined magnetic resonance imaging and spectroscopy study. J Exp Bot 59:3425–3434

    PubMed  CAS  Google Scholar 

  • Wist TJ, Davis AR (2006) Floral nectar production and nectary anatomy and ultrastructure of Echinacea purpurea (Asteraceae). Ann Bot 97:177–193

    PubMed  Google Scholar 

  • Wooley SC et al (2007) Extrafloral nectaries in aspen (Populus tremuloides): heritable genetic variation and herbivore-induced expression. Ann Bot 100:1337–1346

    PubMed  Google Scholar 

  • Yamawo A, Hada Y (2010) Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits. Ann Bot 106:143–148

    PubMed  Google Scholar 

  • Zhu J, Hu ZH (2002) Cytological studies on the development of sieve element and floral nectary tissue in Arabidopsis thaliana. Acta Botanica Sinica 44:9–14

    Google Scholar 

  • Ziegler H, Lüttge UE (1959) Über die resorption von C14 Glutaminsäure durch sezernierende Nektarien. Naturwissenschaften 46:176–177

    CAS  Google Scholar 

  • Zimmermann J (1932) Über die extrafloralen Nektarien der Angiosperm. Beihefte Botanisches Centralblatt 49:99–196

    Google Scholar 

  • Zimmermann M (1953) Paperchromatographische Untersuchungen über die pflanzliche Zuckersekretion. Ber schweiz Bot Ges 63:402–429

    Google Scholar 

  • Zimmermann M (1954) Über die Sekretion saccharosespaltender Transglucosidasen im pflanzlichen Nektar. Experientia 15:145–146

    Google Scholar 

Download references

Acknowledgements

We thank Frantisek Baluska for inviting this chapter, Harry T. Horner and Robert Thornburg and Rosanne Healy, Antonio Cisneros and Christian Kost for kindly providing photographs and Alejandro de León for designing Fig 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Heil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Escalante-Pérez, M., Heil, M. (2012). Nectar Secretion: Its Ecological Context and Physiological Regulation. In: Vivanco, J., Baluška, F. (eds) Secretions and Exudates in Biological Systems. Signaling and Communication in Plants, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23047-9_9

Download citation

Publish with us

Policies and ethics