Advertisement

Plant Root Secretions and Their Interactions with Neighbors

  • Clelia De-la-Peña
  • Dayakar V. Badri
  • Víctor M. Loyola-Vargas
Chapter
Part of the Signaling and Communication in Plants book series (SIGCOMM, volume 12)

Abstract

The rhizosphere biology at the molecular level has advanced dramatically since last decade. The continuous supply of carbon compounds from plant roots engages complex interactions among rhizosphere organisms including interactions between microbes and plants and between plants with other plants being these of the same or different species. Root exudation is part of the rhizodeposition process, which is a major source of soil organic carbon released by plant roots which clearly represents a significant carbon cost to the plant. Root exudates also play a role in soil nutrient availability by altering soil chemistry and soil biological processes. Different studies have highlighted that the rhizosphere soil surrounded by plant roots is more abundant in microbes than the nonrhizosphere soils. Therefore, the major responses in the interaction between plants and microbes must happen in that limited zone. Plants respond to the presence of microbes by releasing a mixture of phytochemicals, volatiles, and high-molecular-weight compounds. Soil microbes, on the other hand, modulate the secretion of root exudates to positively regulate plant growth and disease resistance. Several negative interactions are mediated by root exudates including antimicrobial, biofilm inhibitors, and quorum-sensing mimics to prevent soil-borne pathogens. There is a need to understand these rhizospheric multitrophic interactions in the realistic field conditions to improve the plant growth at species and community level. In addition, studies should be conducted in the field conditions to understand the rhizospheric complex interactions in monocultures and polycultures. This will help to understand the dynamics of interactions and their outcome in influencing the plant’s success when they are in monocultures and in polycultures. The combination of techniques and the continuous development of new techniques in the field of rhizosphere biology coupled with systems approach will allow us partly to elucidate these complex interactions under field conditions.

Keywords

Soil Organic Carbon Arbuscular Mycorrhizal Fungus Root Exudate Panicum Virgatum Hairy Root Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The work in our laboratories was supported by CONACYT grants (VMLV, 61415 and CDS, 121768).

References

  1. Abad LR, D’Urzo MP, Liu D, Narasimhan ML, Reuveni M, Zhu JK, Niu X, Singh NK, Hasegawa PM, Bressan RA (1996) Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Sci 118:11–23CrossRefGoogle Scholar
  2. Akiyama K, Ki M, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefGoogle Scholar
  3. Antelmann H, van Dijl JM, Bron S, Hecker M (2006) Proteomic survey through secretome of Bacillus subtilis. In: Humphery-Smith I, Hecker M (eds) Microbial proteomics: functional biology of whole organisms. Wiley, New Jersey, pp 179–208Google Scholar
  4. Aochi YO, Farmer WJ (2005) Impact of soil microstructure on the molecular transport dynamics of 1,2-dichloroethane. Geoder 127:137–153CrossRefGoogle Scholar
  5. Ascencio J (1997) Root secreted acid phosphatase kinetics as a physiological marker for phosphorus deficiency. J Plant Nutr 20:9–26CrossRefGoogle Scholar
  6. Asensio D, Peñuelas J, Filella I, Llusiá J (2007) On-line screening of soil VOCs exchange responses to moisture, temperature and root presence. Plant Soil 291:249–261CrossRefGoogle Scholar
  7. Ausmees N, Jacobsson K, Lindberg M (2001) A unipolarly located, cell-surface-associated agglutinin, RapA, belongs to a family of Rhizobium-adhering proteins (Rap) in Rhizobium leguminosarum bv. trifolii. Microbiology 147:549–559PubMedGoogle Scholar
  8. Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681PubMedCrossRefGoogle Scholar
  9. Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provokes an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017PubMedCrossRefGoogle Scholar
  10. Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40:983–995CrossRefGoogle Scholar
  11. Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: From molecules and genes to species interactions. Science 301:1377–1380PubMedCrossRefGoogle Scholar
  12. Bais HP, Park S-W, Weir T, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32PubMedCrossRefGoogle Scholar
  13. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  14. Bais HP, Broeckling CD, Vivanco JM (2008) Root exudates modulate plant-microbe interactions in the Rhizosphere. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Springer, Berlin, pp 241–252CrossRefGoogle Scholar
  15. Baluska F, Cvrckova F, Kendrick-Jones J, Volkmann D (2001) Sink plasmodesmata as gateways for phloem unloading. Myosin VIII and calreticulin as molecular determinants of sink strength? Plant Physiol 126:39–46PubMedCrossRefGoogle Scholar
  16. Bardgett RD, Wardle DA, Yeates GW (1998) Linking above-ground and below-ground interactions: how plant responses to foliar herbivory influence soil organisms. Soil Biol Biochem 30:1867–1878CrossRefGoogle Scholar
  17. Barker KR, Koenning SR (1998) Developing sustainable systems for nematode management. Annu Rev Phytopathol 36:165–205PubMedCrossRefGoogle Scholar
  18. Basu U, Jennafer L, Whittal RM, Stephens JL, Wang Y, Zaiane O, Taylor G (2006) Extracellular proteomes of Arabidopsis thaliana and Brassica napus roots: analysis and comparison by MudPIT and LC-MS/MS. Plant Soil 286:357–376CrossRefGoogle Scholar
  19. Becard G, Piche Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325PubMedGoogle Scholar
  20. Bellafiore S, Shen Z, Rosso MN, Abad P, Shih P, Briggs SP (2008) Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS Pathog 4:e1000192PubMedCrossRefGoogle Scholar
  21. Bending GD (2003) The rhizosphere and its microorganisms. In: Thomas B, Murphy DJ, Murray BG (eds) Encyclopaedia of applied plant sciences. Academic, London, pp 1123–1129Google Scholar
  22. Benítez T, Rincón AM, Limón MC, Codón AC (1978) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260Google Scholar
  23. Bertin C, Yang X, Weston LA (2003) The role of exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83CrossRefGoogle Scholar
  24. Bertoli A, Pistelli L, Morelli I, Fraternale D, Giamperi L, Ricci D (2004) Volatile constituents of different parts (roots, stems and leaves) of Smyrnium olusatrum L. Flavour Fragr J 19:522–525CrossRefGoogle Scholar
  25. Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J Ecol 85:561–573CrossRefGoogle Scholar
  26. Birch PRJ, Rehmany AP, Pritchard L, Kamoun S, Beynon JL (2006) Trafficking arms: oomycete effectors enter host plant cells. Trends Microbiol 14:8–11PubMedCrossRefGoogle Scholar
  27. Bird F (1959) The attractiveness of roots to the plant parasitic nematodes Meloidogyne javanica and M. hapla. Nematologica 4:322–335CrossRefGoogle Scholar
  28. Bonkowski M, Cheng W, Griffiths BS, Alphei J, Scheu S (2000) Microbial-faunal interactions in the rhizosphere and effects on plant growth. Eur J Soil Biol 36:135–147CrossRefGoogle Scholar
  29. Bouarab K, Melton R, Peart J, Baulcombe D, Osbourn A (2002) A saponin-detoxifying enzyme mediates suppression of plant defences. Nature 418:889–892PubMedCrossRefGoogle Scholar
  30. Brigham LA, Michaels PJ, Flores HE (1999) Cell-specific production and antimicrobial activity of naphthoquinones in roots of Lithospermum erythrorhizon. Plant Physiol 119:417–428PubMedCrossRefGoogle Scholar
  31. Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74:738–744PubMedCrossRefGoogle Scholar
  32. Caillaud MC, Dubreuil G, Quentin M, Perfus-Barbeoch L, Lecomte P, de Almeida EJ, Abad P, Rosso MN, Favery B (2008) Root-knot nematodes manipulate plant cell functions during a compatible interaction. J Plant Physiol 165:104–113PubMedCrossRefGoogle Scholar
  33. Castro CE, Belser NO, McKinney HE, Thomason IJ (1989) Quantitative bioassay for chemotaxis with plant parasitic nematodes. J Chem Ecol 15:1297–1309CrossRefGoogle Scholar
  34. Chitwood DJ (2003) Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service. Pest Manag Sci 59:748–753PubMedCrossRefGoogle Scholar
  35. Choi J, Park J, Kim D, Jung K, Kang S, Lee YH (2010) Fungal secretome database: integrated platform for annotation of fungal secretomes. BMC Genomics 11:105PubMedCrossRefGoogle Scholar
  36. Cobb FW, Krstic M, Zavarin E (1968) Inhibitory effects of volatile oleoresin components on Fomes annosus and four Ceratocystis species. Phytopathology 58:1327–1335Google Scholar
  37. Colditz F, Nyamsuren O, Niehaus K, Eubel H, Braun HP, Krajinski F (2004) Proteomic approach: Identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Mol Biol 55:109–120PubMedCrossRefGoogle Scholar
  38. Collmer A, Keen NT (1986) The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol 24:383–409CrossRefGoogle Scholar
  39. Currier WW, Strobel GA (1977) Chemotaxis of rhizobium spp. to a glycoprotein produced by birdsfoot trefoil roots. Science 196:434–436PubMedCrossRefGoogle Scholar
  40. Currier AW, Strobel GA (1981) Characterization and biological activity of trefoil chemotactin. Plant Sci Lett 21:159–165CrossRefGoogle Scholar
  41. Curtis RHC (2007) Do phytohormones influence nematode invasion and feeding site establishment? Nematology 9:155–160CrossRefGoogle Scholar
  42. Curtis RHC (2008) Plant-nematode interactions: environmental signals detected by the nematode’s chemosensory organs control changes in the surface cuticle and behaviour. Parasite 15:310–316PubMedGoogle Scholar
  43. Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47CrossRefGoogle Scholar
  44. Davis EL, Hussey RS, Baum TJ, Bakker J, Schots A, Rosso MNl, Abad P (2000) Nematode parasitism genes. Annu Rev Phytopathol 38:365–396PubMedCrossRefGoogle Scholar
  45. De Hoff P, Brill L, Hirsch A (2009) Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet Genomics 282:1–15PubMedCrossRefGoogle Scholar
  46. De Meutter J, Vanholme B, Bauw G, Tytgat T, Gheysen G, Gheysen G (1984) Preparation and sequencing of secreted proteins from the pharyngeal glands of the plant parasitic nematode Heterodera schachtii. Mol Plant Pathol 2:297–301CrossRefGoogle Scholar
  47. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu JR, Pan H, Read ND, Lee YH, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun MH, Bohnert H, Coughlan S, Butler J, Calvo S, Ma LJ, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986PubMedCrossRefGoogle Scholar
  48. DeAngelis KM, Lindow SE, Firestone MK (2008) Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microbiol Ecol 66:197–207PubMedCrossRefGoogle Scholar
  49. De-la-Peña C, Lei Z, Watson BS, Sumner LW, Vivanco JM (2008) Root-microbe communication through protein secretion. J Biol Chem 283:25247–25255PubMedCrossRefGoogle Scholar
  50. Desvaux M, Hébraud M (1978) The protein secretion systems in Listeria: inside out bacterial virulence. FEMS Microbiol Rev 30:774–805CrossRefGoogle Scholar
  51. Devine KJ, Jones PW (2001) Potato cyst nematode hatching activity and hatching factors in inter-specific Solanum hybrids. Nematology 3:141–149CrossRefGoogle Scholar
  52. Dietrich A, Mayer JE, Hahlbrock K (1990) Fungal elicitor triggers rapid, transient, and specific protein phosphorylation in parsley cell suspension cultures. J Biol Chem 265:6360–6368PubMedGoogle Scholar
  53. Do Nascimento CWA, Xing B (2006) Phytoremediation: a review on enhanced metal availability and plant accumulation. Sci Agric (Piracicaba, Braz) 63:299–311Google Scholar
  54. Doyle EA, Lambert KN (2002) Cloning and characterization of an esophageal-gland-specific pectate lyase from the root-knot nematode Meloidogyne javanica. Mol Plant Microbe Interact 15:549–556PubMedCrossRefGoogle Scholar
  55. Du Y, Poppy GM, Powell W, Pickett JA, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J Chem Ecol 24:1355–1368CrossRefGoogle Scholar
  56. Einhelling FA (1995) Mechanisms of actions of allelochemicals in allelopathy. In: Inderjit, Dakshini KMM, Einhelling FA (eds) Allelopathy: organisms, processes and applications. American Chemical Society, Washington DC, pp 96–116Google Scholar
  57. Fagoaga C, Rodrigo I, Conejero V, Hinarejos C, Tuset JJ, Arnau J, Pina JA, Navarro L, Peña L (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5. Mol Breed 7:175–185CrossRefGoogle Scholar
  58. Fan TW, Lane AN, Shenker M, Bartley JP, Crowley D, Higashi RM (2001) Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry 57:209–221PubMedCrossRefGoogle Scholar
  59. Felix G, Grosskopf DG, Regenass M, Boller T (1991) Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc Natl Acad Sci USA 88:8831–8834PubMedCrossRefGoogle Scholar
  60. Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, Duarte J, Borges A, Teixeira AR (1984) The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol 8:677–700CrossRefGoogle Scholar
  61. Friebe A, Lever W, Sikora R, Schnabl H (1998) Allelochemical in root exudates of maize. Effects on root lesion nematode Pratylenchus zea. In: Romeo JT, Downum KR, Verpoorte R (eds) Phytochemical signals and plant microbe interactions. Springer, Heidelberg, pp 71–93Google Scholar
  62. Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Péret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci USA 105:4928–4932PubMedCrossRefGoogle Scholar
  63. Gianinazzi-Pearson V, Dumas-Gaudot E, Gollotte A, Tahiri-Alaoui A, Gianinazzi S (1996) Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytol 133:45–57CrossRefGoogle Scholar
  64. Glinwood R, Pettersson J, Ahmed E, Ninkovic V, Birkett M, Pickett J (2003) Change in acceptability of barley plants to aphids after exposure to allelochemicals from couch-grass (Elytrigia repens). J Chem Ecol 29:261–274PubMedCrossRefGoogle Scholar
  65. Goellner M, Smant G, De Boer JM, Baum TJ, Davis EL (2000) Isolation of Beta-1,4-endoglucanase genes from Globodera tabacum and their expression during parasitism. J Nematol 32:154–165PubMedGoogle Scholar
  66. Grant M, Mansfield J (1999) Early events in host-pathogen interactions. Curr Opin Plant Biol 2:312–319PubMedCrossRefGoogle Scholar
  67. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  68. Gray ND, Howarth R, Pickup RW, Jones JG, Head IM (2000) Use of combined microautoradiography and fluorescence in situ hybridization to determine carbon metabolism in mixed natural communities of uncultured bacteria from the genus Achromatium. Appl Environ Microbiol 66:4518–4522PubMedCrossRefGoogle Scholar
  69. Guerena M (2006) Nematodes: alternative control. National sustainable agriculture information service. ATTRA Publication 1–20Google Scholar
  70. Guerrieri E, Poppy GM, Powell W, Rao R, Pennacchio F (2002) Plant-to-plant communication mediating in-flight orientation of Aphidius ervi. J Chem Ecol 28:1703–1715PubMedCrossRefGoogle Scholar
  71. Hahn MG (1996) Microbial elicitors and their receptors in plants. Annu Rev Phytopathol 34:387–412PubMedCrossRefGoogle Scholar
  72. Harman GE, Björkman T (1998) Potential and existing uses of Trichoderma and Gliocladium por plant disease control and plant growth enhancement. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium: enzymes, biological control and commercial applications. Taylor & Francis, London, pp 229–265Google Scholar
  73. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56PubMedCrossRefGoogle Scholar
  74. Harrison MJ (1999) Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 50:361–389PubMedCrossRefGoogle Scholar
  75. Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42PubMedCrossRefGoogle Scholar
  76. Hawes MC, Smith LY (1989) Requirement for chemotaxis in pathogenicity of Agrobacterium tumefaciens on roots of soil-grown pea plants. J Bacteriol 171:5668–5671PubMedGoogle Scholar
  77. Hayward S, Muncey RJ, James AE, Halsall CJ, Hewitt CN (2001) Monoterpene emissions from soil in a Sitka spruce forest. Atmosph Environ 35:4081–4087CrossRefGoogle Scholar
  78. Hirose I, Sano K, Shioda I, Kumano M, Nakamura K, Yamane K (2000) Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. Microbiology 146:65–75PubMedGoogle Scholar
  79. Hoffland ELLI, van den Boogaard RIKI, Nelemans JAAP, Findenegg G (1992) Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants. New Phytol 122:675–680CrossRefGoogle Scholar
  80. Hopkins BG, Whitney DA, Lamond RE, Jolley VD (1998) Phytosiderophore release by sorghum, wheat, and corn under zinc deficiency. J Plant Nutr 21:2623–2637CrossRefGoogle Scholar
  81. Houston KM, Cushley W, Harnett W (1997) Studies on the site and mechanism of attachment of phosphorylcholine to a filarial nematode secreted glycoprotein. J Biol Chem 272:1527–1533PubMedCrossRefGoogle Scholar
  82. Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS (2006) A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol Plant Microbe Interact 19:463–470PubMedCrossRefGoogle Scholar
  83. Hubbard JE, Flores-Lara Y, Schmitt M, McClure MA, Stock SP, Hawes MC (2005) Increased penetration of host roots by nematodes after recovery from quiescence induced by root cap exudate. Nematology 7:321–331CrossRefGoogle Scholar
  84. Hussey RS (1989) Disease-inducing secretions of plant-parasitic nematodes. Annu Rev Phytopathol 27:123–141CrossRefGoogle Scholar
  85. Hütsch BW, Augustin J, Merbach W (2002) Plant rhizodeposition – an important source for carbon turnover in soils. J Plant Nutr Soil Sci 165:397–407CrossRefGoogle Scholar
  86. Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol Monogr 55:119–140CrossRefGoogle Scholar
  87. Jaubert S, Ledger TN, Laffaire JB, Piotte C, Abad P, Rosso M-N (2002) Direct identification of stylet secreted proteins from root-knot nematodes by a proteomic approach. Mol Biochem Parasitol 121:205–211PubMedCrossRefGoogle Scholar
  88. Johnson JF, Allan DL, Vance CP (1994) Phosphorus stress-induced proteoid roots show altered metabolism in Lupinus albus. Plant Physiol 104:657–665PubMedGoogle Scholar
  89. Joosten MHAJ, De Wit PJGM (1989) Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-b-glucanases and chitinases. Plant Physiol 89:945–951PubMedCrossRefGoogle Scholar
  90. Jose S, Gillespie AR (1998) Allelopathy in black walnut (Juglans nigra L.) alley cropping. I. Spatio-temporal variation in soil juglone in a black walnut-corn (Zea mays L.) alley cropping system in the midwestern USA. Plant Soil 203:191–197CrossRefGoogle Scholar
  91. Kaffarnik FAR, Jones AME, Rathjen JP, Peck SC (2009) Effector proteins of the bacterial pathogen Pseudomonas syringae alter the extracellular proteome of the host plant, Arabidopsis thaliana. Mol Cell Proteomics 8:145–156PubMedCrossRefGoogle Scholar
  92. Kalemba D, Kusewicz D, Swiader K (2002) Antimicrobial properties of the essential oil of Artemisia asiatica Nakai. Phytother Res 16:288–291PubMedCrossRefGoogle Scholar
  93. Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44:41–60PubMedCrossRefGoogle Scholar
  94. Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29PubMedCrossRefGoogle Scholar
  95. Kazemi-Pour N, Condemine G, Hugouvieux-Cotte-Pattat N (2004) The secretome of the plant pathogenic bacterium Erwinia chrysanthemi. Proteomics 4:3177–3186PubMedCrossRefGoogle Scholar
  96. Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236PubMedCrossRefGoogle Scholar
  97. Kiely P, Haynes J, Higgins C, Franks A, Mark G, Morrissey J, O’Gara F (2006) Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. Microb Ecol 51:257–266PubMedCrossRefGoogle Scholar
  98. Kingsley MT, Fredrickson JK, Metting FB, Seidler RJ (1994) Environmental restoration using plant-microbe bioaugmentation. In: Hinchee RE, Leeson A, Semprini L, Ong SK (eds) Bioremediation of chlorinated and polycyclic aromatic hydrocarbon. Lewis, Boca Raton, FL, pp 287–292Google Scholar
  99. Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321:83–115CrossRefGoogle Scholar
  100. Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ané JM, Lauber E, Bisseling T, Dénarié J, Rosenberg C, Debellé F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364PubMedCrossRefGoogle Scholar
  101. Li S, Hartman GL, Bs L, Widholm JW (2000) Identification of a stress-induced protein in stem exudates of soybean seedlings root-infected with Fusarium solani f. sp. glycines. Plant Physiol Biochem 38:803–809CrossRefGoogle Scholar
  102. Lin C, Owen SM, Peñuelas J (2007) Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biol Biochem 39:951–960CrossRefGoogle Scholar
  103. Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol 85:315–317PubMedCrossRefGoogle Scholar
  104. Lou Y-G, Du MH, Turlings TCJ, Cheng J-A, Shan W-F (2005) Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae. J Chem Ecol 31:1985–2001PubMedCrossRefGoogle Scholar
  105. Lynch JM (1987) The rhizosphere. Wiley Interscience, ChichesterGoogle Scholar
  106. Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10CrossRefGoogle Scholar
  107. Mahaffee WF, Kloepper JW (1997) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb Ecol 34:210–223PubMedCrossRefGoogle Scholar
  108. Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261PubMedCrossRefGoogle Scholar
  109. Manson MD (1990) Introduction to bacterial motility and chemotaxis. J Chem Ecol 16:107–118CrossRefGoogle Scholar
  110. Marschner H (1995) Mineral nutrition of higher plants. Academic, LondonGoogle Scholar
  111. Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449PubMedCrossRefGoogle Scholar
  112. Mawuenyega KG, Kaji H, Yamauchi Y, Shinkawa T, Saito H, Taoka M, Takahashi N, Isobe T (2003) Large-scale identification of Caenorhabditis elegans proteins by multidimensional liquid chromatography-tandem mass spectrometry. J Proteome Res 2:23–35PubMedCrossRefGoogle Scholar
  113. Melin E, Krupa S (1971) Studies on ectomycorrhizae of pine II. Growth inhibition of mycorrhizal fungi by volatile organic constituents of Pinus silvestris (Scots Pine) roots. Physiol Plant 25:337–340CrossRefGoogle Scholar
  114. Nagahashi G, Douds DD (1999) Rapid and sensitive bioassay to study signals between root exudates and arbuscular mycorrhizal fungi. Biotechnol Tech 13:893–897CrossRefGoogle Scholar
  115. Nakhasi HL, Pogue GP, Duncan RC, Joshi M, Atreya CD, Lee NS, Dwyer DM (1998) Implications of calreticulin function in parasite biology. Parasitol Today 14:157–160PubMedCrossRefGoogle Scholar
  116. Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153PubMedCrossRefGoogle Scholar
  117. Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 5:653–658CrossRefGoogle Scholar
  118. Ndimba BK, Chivasa S, Hamilton JM, Simon WJ, Slabas AR (2003) Proteomic analysis of changes in the extracellular matrix of Arabidopsis cell suspension cultures induced by fungal elicitors. Proteomics 3:1047–1059PubMedCrossRefGoogle Scholar
  119. Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomy 23:375–396CrossRefGoogle Scholar
  120. Nicol GW, Glover LA, Prosser JI (2003) Spatial analysis of archaeal community structure in grassland soil. Appl Environ Microbiol 69:7420–7429PubMedCrossRefGoogle Scholar
  121. Nóbrega FM, Santos IS, Cunha MD, Carvalho AO, Gomes VM (2005) Antimicrobial proteins from cowpea root exudates: inhibitory activity against Fusarium oxysporum and purification of a chitinase-like protein. Plant Soil 272:223–232CrossRefGoogle Scholar
  122. Nürnberger T, Brunner F (2002) Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns. Curr Opin Plant Biol 5:318–324PubMedCrossRefGoogle Scholar
  123. Owen SM, Clark S, Pompe M, Semple KT (2007) Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of Populus tremula. FEMS Microbiol Lett 268:34–39PubMedCrossRefGoogle Scholar
  124. Palmer AG, Gao R, Maresh J, Erbil WK, Lynn DG (2004) Chemical biology of multi-host/pathogen interactions: chemical perception and metabolic complementation. Annu Rev Phytopathol 42:439–464PubMedCrossRefGoogle Scholar
  125. Palomski T, Saarilahti HT (1997) Isolation and characterization of new C-terminal substitution mutations affecting secretion of polygalacturonase in Erwinia carotovora ssp. carotovora. FEBS Lett 400:122–126CrossRefGoogle Scholar
  126. Passador L, Cook JM, Gambello MJ, Rust L, Iglewski BH (1993) Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130PubMedCrossRefGoogle Scholar
  127. Paszkowski U (2006) Mutualism and parasitism: the yin and yang of plant symbioses. Curr Opin Plant Biol 9:364–370PubMedCrossRefGoogle Scholar
  128. Paterson E, Hall JM, Rattray EAS, Griffiths BS, Ritz K, Killham K (1997) Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Glob Chang Biol 3:363–377CrossRefGoogle Scholar
  129. Peck SC, Nühse TS, Hess D, Iglesias A, Meins F, Boller T (2001) Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors. Plant Cell 13:1467–1475PubMedGoogle Scholar
  130. Perombelon MCM, Kelman A (1980) Ecology of the soft rot Erwinias. Annu Rev Phytopathol 18:361–387CrossRefGoogle Scholar
  131. Perry RN (2001) An evaluation of types of attractants enabling plant-parasitic nematodes to locate plant roots. Russ J Nematol 13:83–88Google Scholar
  132. Phalip V, Delalande F, Carapito C, Goubet F, Hatsch D, Leize-Wagner E, Dupree P, Dorsselaer A, Jeltsch JM (2005) Diversity of the exoproteome of Fusarium graminearum; grown on plant cell wall. Curr Genet 48:366–379PubMedCrossRefGoogle Scholar
  133. Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New YorkGoogle Scholar
  134. Popeijus H, Overmars H, Jones J, Blok V, Goverse A, Helder J, Schots A, Bakker J, Smant G (2000) Enzymology: degradation of plant cell walls by a nematode. Nature 406:36–37PubMedCrossRefGoogle Scholar
  135. Pritchard DI, Brwon A, Kasper G, Mcelroy P, Loukas A, Hewitt C, Berry C, Füllkrug R, Beck E (1999) Par Immunol 2:439–450Google Scholar
  136. Prithiviraj B, Perry LG, Dayakar BV, Vivanco JM (2007) Chemical facilitation and induced pathogen resistance mediated by a root-secreted phytotoxin. New Phytol 173:852–860PubMedCrossRefGoogle Scholar
  137. Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693PubMedCrossRefGoogle Scholar
  138. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843PubMedCrossRefGoogle Scholar
  139. Robertson L, Robertson WM, Jones JT (1999) Direct analysis of the secretions of the potato cyst nematode Globodera rostochiensis. Parasitology 119:167–176PubMedCrossRefGoogle Scholar
  140. Robinson F (2002) Nematodes behaviour and migration through soil and host tissue. In: Chen C, Chen S, Dickson DW (eds) Basis of behaviour. CABI, Wallingford, pp 331–401Google Scholar
  141. Robinson MP, Atkinson HJ, Perry RN (1987) The influence of soil moisture and storage time on the motility, infectivity and lipid utilization of second stage juveniles of the potato cyst nematodes Globodera rostochiensis and G. pallida. Rev Nematol 10:343–348Google Scholar
  142. Rohloff J (2002) Volatiles from rhizomes of Rhodiola rosea L. Phytochemistry 59:655–661PubMedCrossRefGoogle Scholar
  143. Ronchel MC, Ramos JL (2001) Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol 67:2649–2656PubMedCrossRefGoogle Scholar
  144. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547PubMedCrossRefGoogle Scholar
  145. Rose JKC, Ham KS, Darvill AG, Albersheim P (2002) Molecular cloning and characterization of glucanase inhibitor proteins: coevolution of a counterdefense mechanism by plant pathogens. Plant Cell 14:1329–1345PubMedCrossRefGoogle Scholar
  146. Rouatt JW, Katznelson H (1960) Influence of light on bacterial flora of roots. Nature 186:659–660PubMedCrossRefGoogle Scholar
  147. Rouatt JW, Katznelson H, Payne TMB (1960) Statistical evaluation of the rhizosphere effect. Soil Sci Soc Am J 24:271–273CrossRefGoogle Scholar
  148. Rudrappa T, Bonsall J, Gallagher J, Seliskar D, Bais H (2007) Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J Chem Ecol 33:1898–1918PubMedCrossRefGoogle Scholar
  149. Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio N, Czymmek KJ, Paré PW, Bais HP (2010) The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol 3:130–138PubMedCrossRefGoogle Scholar
  150. Ruther J, Kleier S (2005) Plant-plant signaling: ethylene synergizes volatile emission In Zea mays induced by exposure to (Z)-3-hexen-1-ol. J Chem Ecol 31:2217–2222PubMedCrossRefGoogle Scholar
  151. Saarilahti HT, Pirhonen M, Karlsson MB, Flego D, Palva ET (1992) Expression of pehA-bla gene fusions in Erwinia carotovora subsp. carotovora and isolation of regulatory mutants affecting polygalacturonase production. Mol Gen Genet 234:81–88PubMedGoogle Scholar
  152. Scher FM, Kloepper JW, Singleton CA (1985) Chemotaxis of fluorescent Pseudomonas spp. to soybean seed exudates in vitro and in soil. Can J Microbiol 31:570–574CrossRefGoogle Scholar
  153. Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079PubMedCrossRefGoogle Scholar
  154. Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14:53R–62RPubMedCrossRefGoogle Scholar
  155. Shulaev V, Silverman P, Raskin I (1997) Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 386:718–721CrossRefGoogle Scholar
  156. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69CrossRefGoogle Scholar
  157. Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393PubMedCrossRefGoogle Scholar
  158. Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang ZM, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto H (2000) Aluminum-induced 1– > 3-b-D-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata. A new mechanism of aluminum toxicity in plants. Plant Physiol 124:991–1005PubMedCrossRefGoogle Scholar
  159. Smant G, Stokkermans JPWG, Yan Y, De Boer JM, Baum TJ, Wang X, Hussey RS, Gommers FJ, Henrissat B, Davis EL, Helder J, Schots A, Bakker J (1998) Endogenous cellulases in animals: isolation of b-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc Natl Acad Sci USA 95:4906–4911PubMedCrossRefGoogle Scholar
  160. Söderberg KH, Probanza A, Jumpponen A, Baath E (2004) The microbial community in the rhizosphere determined by community-level physiological profiles (CLPP) and direct soil- and cfu-PLFA techniques. Appl Soil Ecol 25:135–145CrossRefGoogle Scholar
  161. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. CRC Crit Rev Microbiol 30:205–240CrossRefGoogle Scholar
  162. Spanu P, Boller T, Alexander L, Wien S-V, Faccio A, Bonfante-Fasolo P (1989) Chitinase in roots of mycorrhizal Allium porrum: regulation and localization. Planta 177:447–455CrossRefGoogle Scholar
  163. Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58PubMedCrossRefGoogle Scholar
  164. Stone JM, Walker JC (1995) Plant protein kinase families and signal transduction. Plant Physiol 108:451–457PubMedCrossRefGoogle Scholar
  165. Strauss SY (1991) Indirect effects in community ecology: their definition, study and importance. Trends Ecol Evol 6:206–210PubMedCrossRefGoogle Scholar
  166. Suárez MB, Sanz L, Chamorro MI, Rey M, González FJ, Llobell A, Monte E (2005) Proteomic analysis of secreted proteins from Trichoderma harzianum: Identification of a fungal cell wall-induced aspartic protease. Fungal Genet Biol 42:924–934PubMedCrossRefGoogle Scholar
  167. Swift S, Lynch MJ, Fish L, Kirke DF, Tomas JM, Stewart GSAB, Williams P (1999) Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila. Infect Immun 67:5192–5199PubMedGoogle Scholar
  168. Szekeres A, Kredics L, Antal Z, Kevei F, Manczinger L (2004) Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. FEMS Microbiol Lett 33:215–222CrossRefGoogle Scholar
  169. Taddei P, Tugnoli V, Bottura G, Dallavalle E, Zechini D’Aulerio A (2002) Vibrational, 1 H-NMR spectroscopic, and thermal characterization of gladiolus root exudates in relation to Fusarium oxysporum f. sp. gladioli resistance. Biopolymers 67:428–439PubMedCrossRefGoogle Scholar
  170. Tamasloukht M’B, Sejalon-Delmas N, Kluever A, Jauneau A, Roux C, Becard G, Franken P (2003) Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol 131:1468–1478PubMedCrossRefGoogle Scholar
  171. Timmermans BGH, Vos J, Stomph TJ, Van Nieuwburg J, Van der Putten PEL (2007) Field performance of Solanum sisymbriifolium, a trap crop for potato cyst nematodes. II. Root characteristics. Ann Appl Biol 150:99–106CrossRefGoogle Scholar
  172. Tjalsma H, Bolhuis A, Jongbloed JDH, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547PubMedCrossRefGoogle Scholar
  173. Torsvik V, Ovreás L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245PubMedCrossRefGoogle Scholar
  174. Uren NC (2000) Types, amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nammipieri P (eds) The rhizosphere, biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 19–40Google Scholar
  175. Veech JA, Starr JL, Nordgren RM (1987) Production and partial characterization of stylet exudate from adult females of Meloidogyne incognita. J Nematol 19:463–468PubMedGoogle Scholar
  176. Vilela GR, de Almeida GS, D’Arce MABR, Moraes MHD, Brito JO, da Silva MFd, Silva SC, de Stefano Piedade SM, Calori-Domingues MA, da Gloria EM (2009) Activity of essential oil and its major compound, 1,8-cineole, from Eucalyptus globulus Labill., against the storage fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. J Stor Prod Res 45:108–111CrossRefGoogle Scholar
  177. Viles AL, Reese RN (1996) Allelopathic potential of Echinacea angustifolia D.C. Environ Exp Bot 36:39–43CrossRefGoogle Scholar
  178. von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482CrossRefGoogle Scholar
  179. Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51PubMedCrossRefGoogle Scholar
  180. Wall LG (2000) The actinorhizal symbiosis. J Plant Growth Regul 19:167–182PubMedGoogle Scholar
  181. Watt SA, Wilke A (2005) Comprehensive analysis of the extracellular proteins from Xanthomonas campestris pv. campestris B100. Proteomics 5:153–167PubMedCrossRefGoogle Scholar
  182. Weir T, Bais H, Vivanco J (2003) Intraspecific and interspecific interactions mediated by a phytotoxin, (−)-catechin, secreted by the roots of Centaurea maculosa (Spotted Knapweed). J Chem Ecol 29:2397–2412PubMedCrossRefGoogle Scholar
  183. Weir TL, Park S-W, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479PubMedCrossRefGoogle Scholar
  184. Wen F, VanEtten HD, Tsaprailis G, Hawes MC (2007) Extracellular proteins in pea root tip and border cell exudates. Plant Physiol 143:773–783PubMedCrossRefGoogle Scholar
  185. Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854PubMedCrossRefGoogle Scholar
  186. Worm J, Jensen LE, Søndergaard M, Nybroe O (2000) Interactions between proteolytic and non-proteolytic Pseudomonas fluorescens affect protein degradation in a model community. Plant Sci Lett 32:103–109Google Scholar
  187. Wubben MJE, Jin J, Baum TJ (2008) Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. Mol Plant Microbe Interact 21:424–432PubMedCrossRefGoogle Scholar
  188. Wuyts N, Swennen R, Waele D (2006) Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant parasitic nematodes adopholis similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology 8:89–101CrossRefGoogle Scholar
  189. Yajima W, Kav NNV (2006) The proteome of the phytopathogenic fungus Sclerotinia sclerotiorum. Proteomics 6:5995–6007PubMedCrossRefGoogle Scholar
  190. Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351PubMedCrossRefGoogle Scholar
  191. Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353PubMedCrossRefGoogle Scholar
  192. Zak JC, Willig MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: A quantitative approach. Soil Biol Biochem 26:1101–1108CrossRefGoogle Scholar
  193. Zasada IA, Meyer SLF, Halbrendt JM, Rice C (2005) Activity of hydroxamic acids from Secale cereale against the plant-parasitic nematodes Meloidogyne incognita and Xiphinema americanum. Phytopathology 95:1116–1121PubMedCrossRefGoogle Scholar
  194. Zelles L (1997) Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275–294PubMedCrossRefGoogle Scholar
  195. Zhao X, Schmitt M, Hawes M (2000) Species-dependent effects of border cell and root tip exudates on nematode behaviour. Phytopathology 90:1239–1245PubMedCrossRefGoogle Scholar
  196. Zwart KB, Kuikman PJ, van Veen JA (1994) Rhizosphere protozoa: their significance in nutrient dynamics. In: Darbyshire JF (ed) Soil protozoa. CAB International, Wallingford, pp 93–122Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Clelia De-la-Peña
    • 1
  • Dayakar V. Badri
    • 2
  • Víctor M. Loyola-Vargas
    • 3
  1. 1.Unidad de BiotecnologíaCentro de Investigación Científica de YucatánMéridaMéxico
  2. 2.Department of Horticulture and Landscape Architecture and Center for Rhizosphere BiologyColorado State UniversityFort CollinsUSA
  3. 3.Unidad de Bioquímica y Biología Molecular de PlantasCentro de Investigación Científica de YucatánMéridaMéxico

Personalised recommendations