When Both Transmitting and Receiving Energies Matter: An Application of Network Coding in Wireless Body Area Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6827)


A network coding scheme for practical implementations of wireless body area networks is presented, with the objective of providing reliability under low-energy constraints. We propose a simple network layer protocol for star networks, adapting redundancy based on both transmission and reception energies for data and control packets, as well as channel conditions. Our numerical results show that even for small networks, the amount of energy reduction achievable can range from 29% to 87%, as the receiving energy per control packet increases from equal to much larger than the transmitting energy per data packet. The achievable gains increase as a) more nodes are added to the network, and/or b) the channels seen by different sensor nodes become more asymmetric.


wireless body area networks network coding medium access control energy efficiency 


  1. 1.
    Cao, H., Leung, V., Chow, C., Chan, H.: Enabling technologies for wireless body area networks: A survey and outlook. IEEE Comm. Magazine 47(12), 84–93 (2009)CrossRefGoogle Scholar
  2. 2.
    Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., Leung, V.: Body area networks: A survey. Mobile Networks and Applications, 1–23 (2010)Google Scholar
  3. 3.
    Daly, D., Mercier, P., Bhardwaj, M., Stone, A., Aldworth, Z., Daniel, T., Voldman, J., Hildebrand, J., Chandrakasan, A.: A pulsed UWB receiver SoC for insect motion control. IEEE Journal of Solid-State Circuits 45(1), 153–166 (2010)CrossRefGoogle Scholar
  4. 4.
    Li, H., Tan, J.: An ultra-low-power medium access control protocol for body sensor network. In: IEEE-EMBS 2005, pp. 2451–2454. IEEE, Los Alamitos (2006)Google Scholar
  5. 5.
    Lucani, D., Médard, M., Stojanovic, M.: Broadcasting in time-division duplexing: A random linear network coding approach. In: IEEE NetCod 2009, pp. 62–67. IEEE, Los Alamitos (2009)Google Scholar
  6. 6.
    Lucani, D., Stojanovic, M., Médard, M.: Random Linear Network Coding For Time Division Duplexing: Energy Analysis. In: IEEE ICC 2009, pp. 1–5 (2009)Google Scholar
  7. 7.
    Lucani, D., Stojanovic, M., Médard, M.: Random linear network coding for time division duplexing: When to stop talking and start listening. In: IEEE INFOCOM 2009, pp. 1800–1808. IEEE, Los Alamitos (2009)Google Scholar
  8. 8.
    Mercier, P., Daly, D., Chandrakasan, A.: An Energy-Efficient All-Digital UWB Transmitter Employing Dual Capacitively-Coupled Pulse-Shaping Drivers. IEEE Journal of Solid-State Circuits 44(6), 1679–1688 (2009)CrossRefGoogle Scholar
  9. 9.
    Omeni, O., Wong, A., Burdett, A.J., Toumazou, C.: Energy efficient medium access protocol for wireless medical body area sensor networks. IEEE Trans. on Biomedical Circuits and Systems 2(4), 251–259 (2008)CrossRefGoogle Scholar
  10. 10.
    Ryckaert, J., Desset, C., Fort, A., Badaroglu, M., De Heyn, V., Wambacq, P., Van der Plas, G., Donnay, S., Van Poucke, B., Gyselinckx, B.: Ultra-wide-band transmitter for low-power wireless body area networks: Design and evaluation. IEEE Trans. on Circuits and Systems I: Regular Papers 52(12), 2515–2525 (2005)CrossRefGoogle Scholar
  11. 11.
    Yazdandoost, K., Sayrafian-Pour, K.: Channel model for body area network (BAN). IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) (IEEE P802.15-08-0033-00-0006) (2008)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2011

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Instituto de Telecomunicações, DEEC Faculdade de EngenhariaUniversidade do PortoPortugal

Personalised recommendations