Skip to main content

Algorithm for Identification of Piecewise Smooth Hybrid Systems: Application to Eukaryotic Cell Cycle Regulation

  • Conference paper
Algorithms in Bioinformatics (WABI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6833))

Included in the following conference series:

Abstract

We discuss piecewise smooth hybrid systems as models for regulatory networks in molecular biology. These systems involve both continuous and discrete variables. The discrete variables allow to switch on and off some of the molecular interactions in the model of the biological system. Piecewise smooth hybrid models are well adapted to approximate the dynamics of multiscale dissipative systems that occur in molecular biology. We show how to produce such models by a top down approach that use biological knowledge for a guided choice of important variables and interactions. Then we propose an algorithm for fitting parameters of the piecewise smooth models from data. We illustrate some of the possibilities of this approach by proposing hybrid versions of eukaryotic cell cycle regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barton, P.I., Banga, J.R., Galan, S.: Optimization of hybrid discrete/continuous dynamic systems. Computers & Chemical Engineering 24(9-10), 2171–2182 (2000)

    Article  Google Scholar 

  2. Chu, K.W., Deng, Y., Reinitz, J.: Parallel simulated annealing by mixing of states 1. Journal of Computational Physics 148(2), 646–662 (1999)

    Article  MATH  Google Scholar 

  3. Csikász-Nagy, A., Battogtokh, D., Chen, K.C., Novák, B., Tyson, J.J.: Analysis of a generic model of eukaryotic cell-cycle regulation. Biophysical Journal 90(12), 4361–4379 (2006)

    Article  Google Scholar 

  4. Di Bernardo, M.: Piecewise-smooth dynamical systems: theory and applications. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  5. De Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bulletin of Mathematical Biology 66(2), 301–340 (2004)

    Article  MATH  Google Scholar 

  6. Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In: Proceedings of the 13th ACM International Conference on Hybrid systems: Computation and Control, pp. 11–20. ACM, New York (2010)

    Google Scholar 

  7. Filippov, A.F., Arscott, F.M.: Differential equations with discontinuous righthand sides. Springer, Heidelberg (1988)

    Book  Google Scholar 

  8. Gorban, A.N., Radulescu, O.: Dynamic and static limitation in reaction networks, revisited. In: West, D., Marin, G.B., Yablonsky, G.S. (eds.) Advances in Chemical Engineering - Mathematics in Chemical Kinetics and Engineering. Advances in Chemical Engineering, vol. 34, pp. 103–173. Elsevier, Amsterdam (2008)

    Chapter  Google Scholar 

  9. Gebert, J., Radde, N., Weber, G.W.: Modeling gene regulatory networks with piecewise linear differential equations. European Journal of Operational Research 181(3), 1148–1165 (2007)

    Article  MATH  Google Scholar 

  10. Gorban, A.N., Radulescu, O., Zinovyev, A.Y.: Asymptotology of chemical reaction networks. Chemical Engineering Science 65, 2310–2324 (2010)

    Article  Google Scholar 

  11. Liebermeister, W., Uhlendorf, J., Klipp, E.: Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Bioinformatics 26(12), 1528 (2010)

    Article  Google Scholar 

  12. Matveev, A.S., Savkin, A.V.: Qualitative theory of hybrid dynamical systems. Birkhäuser, Basel (2000)

    Book  MATH  Google Scholar 

  13. Novak, B., Tyson, J.J.: A model for restriction point control of the mammalian cell cycle. Journal of Theoretical Biology 230(4), 563–579 (2004)

    Article  Google Scholar 

  14. Radulescu, O., Gorban, A.N., Zinovyev, A., Lilienbaum, A.: Robust simplifications of multiscale biochemical networks. BMC Systems Biology 2(1), 86 (2008)

    Article  Google Scholar 

  15. Savageau, M.A., Voit, E.O.: Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Mathematical Biosciences 87(1), 83–115 (1987)

    Article  MATH  Google Scholar 

  16. Shorten, R., Wirth, F., Mason, O., Wulff, K., King, C.: Stability Criteria for Switched and Hybrid Systems. SIAM Review-The Flagship Journal of the Society for Industrial and Applied Mathematics 49(4), 545–592 (2007)

    MATH  Google Scholar 

  17. Tavernini, L.: Differential automata and their discrete simulators. Nonlinear Anal. Theory Methods Applic. 11(6), 665–683 (1987)

    Article  MATH  Google Scholar 

  18. Tyson, J.J.: Modeling the cell division cycle: cdc2 and cyclin interactions. Proceedings of the National Academy of Sciences of the United States of America 88(16), 7328 (1991)

    Article  Google Scholar 

  19. Vakulenko, S.: Complexité dynamique des réseaux de Hopfield: Dynamical complexity of the Hopfield networks. Comptes Rendus Mathematique 335(7), 639–642 (2002)

    Article  MATH  Google Scholar 

  20. Vakulenko, S., Grigoriev, D.: Complexity of gene circuits, pfaffian functions and the morphogenesis problem. Comptes Rendus Mathematique 337(11), 721–724 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Noel, V., Vakulenko, S., Radulescu, O. (2011). Algorithm for Identification of Piecewise Smooth Hybrid Systems: Application to Eukaryotic Cell Cycle Regulation. In: Przytycka, T.M., Sagot, MF. (eds) Algorithms in Bioinformatics. WABI 2011. Lecture Notes in Computer Science(), vol 6833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23038-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23038-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23037-0

  • Online ISBN: 978-3-642-23038-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics