Abstract
We discuss piecewise smooth hybrid systems as models for regulatory networks in molecular biology. These systems involve both continuous and discrete variables. The discrete variables allow to switch on and off some of the molecular interactions in the model of the biological system. Piecewise smooth hybrid models are well adapted to approximate the dynamics of multiscale dissipative systems that occur in molecular biology. We show how to produce such models by a top down approach that use biological knowledge for a guided choice of important variables and interactions. Then we propose an algorithm for fitting parameters of the piecewise smooth models from data. We illustrate some of the possibilities of this approach by proposing hybrid versions of eukaryotic cell cycle regulation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barton, P.I., Banga, J.R., Galan, S.: Optimization of hybrid discrete/continuous dynamic systems. Computers & Chemical Engineering 24(9-10), 2171–2182 (2000)
Chu, K.W., Deng, Y., Reinitz, J.: Parallel simulated annealing by mixing of states 1. Journal of Computational Physics 148(2), 646–662 (1999)
Csikász-Nagy, A., Battogtokh, D., Chen, K.C., Novák, B., Tyson, J.J.: Analysis of a generic model of eukaryotic cell-cycle regulation. Biophysical Journal 90(12), 4361–4379 (2006)
Di Bernardo, M.: Piecewise-smooth dynamical systems: theory and applications. Springer, Heidelberg (2008)
De Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bulletin of Mathematical Biology 66(2), 301–340 (2004)
Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In: Proceedings of the 13th ACM International Conference on Hybrid systems: Computation and Control, pp. 11–20. ACM, New York (2010)
Filippov, A.F., Arscott, F.M.: Differential equations with discontinuous righthand sides. Springer, Heidelberg (1988)
Gorban, A.N., Radulescu, O.: Dynamic and static limitation in reaction networks, revisited. In: West, D., Marin, G.B., Yablonsky, G.S. (eds.) Advances in Chemical Engineering - Mathematics in Chemical Kinetics and Engineering. Advances in Chemical Engineering, vol. 34, pp. 103–173. Elsevier, Amsterdam (2008)
Gebert, J., Radde, N., Weber, G.W.: Modeling gene regulatory networks with piecewise linear differential equations. European Journal of Operational Research 181(3), 1148–1165 (2007)
Gorban, A.N., Radulescu, O., Zinovyev, A.Y.: Asymptotology of chemical reaction networks. Chemical Engineering Science 65, 2310–2324 (2010)
Liebermeister, W., Uhlendorf, J., Klipp, E.: Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Bioinformatics 26(12), 1528 (2010)
Matveev, A.S., Savkin, A.V.: Qualitative theory of hybrid dynamical systems. Birkhäuser, Basel (2000)
Novak, B., Tyson, J.J.: A model for restriction point control of the mammalian cell cycle. Journal of Theoretical Biology 230(4), 563–579 (2004)
Radulescu, O., Gorban, A.N., Zinovyev, A., Lilienbaum, A.: Robust simplifications of multiscale biochemical networks. BMC Systems Biology 2(1), 86 (2008)
Savageau, M.A., Voit, E.O.: Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Mathematical Biosciences 87(1), 83–115 (1987)
Shorten, R., Wirth, F., Mason, O., Wulff, K., King, C.: Stability Criteria for Switched and Hybrid Systems. SIAM Review-The Flagship Journal of the Society for Industrial and Applied Mathematics 49(4), 545–592 (2007)
Tavernini, L.: Differential automata and their discrete simulators. Nonlinear Anal. Theory Methods Applic. 11(6), 665–683 (1987)
Tyson, J.J.: Modeling the cell division cycle: cdc2 and cyclin interactions. Proceedings of the National Academy of Sciences of the United States of America 88(16), 7328 (1991)
Vakulenko, S.: Complexité dynamique des réseaux de Hopfield: Dynamical complexity of the Hopfield networks. Comptes Rendus Mathematique 335(7), 639–642 (2002)
Vakulenko, S., Grigoriev, D.: Complexity of gene circuits, pfaffian functions and the morphogenesis problem. Comptes Rendus Mathematique 337(11), 721–724 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Noel, V., Vakulenko, S., Radulescu, O. (2011). Algorithm for Identification of Piecewise Smooth Hybrid Systems: Application to Eukaryotic Cell Cycle Regulation. In: Przytycka, T.M., Sagot, MF. (eds) Algorithms in Bioinformatics. WABI 2011. Lecture Notes in Computer Science(), vol 6833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23038-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-23038-7_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23037-0
Online ISBN: 978-3-642-23038-7
eBook Packages: Computer ScienceComputer Science (R0)