Advertisement

Algorithm for Identification of Piecewise Smooth Hybrid Systems: Application to Eukaryotic Cell Cycle Regulation

  • Vincent Noel
  • Sergei Vakulenko
  • Ovidiu Radulescu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6833)

Abstract

We discuss piecewise smooth hybrid systems as models for regulatory networks in molecular biology. These systems involve both continuous and discrete variables. The discrete variables allow to switch on and off some of the molecular interactions in the model of the biological system. Piecewise smooth hybrid models are well adapted to approximate the dynamics of multiscale dissipative systems that occur in molecular biology. We show how to produce such models by a top down approach that use biological knowledge for a guided choice of important variables and interactions. Then we propose an algorithm for fitting parameters of the piecewise smooth models from data. We illustrate some of the possibilities of this approach by proposing hybrid versions of eukaryotic cell cycle regulation.

Keywords

systems biology hybrid models cell cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BBG00]
    Barton, P.I., Banga, J.R., Galan, S.: Optimization of hybrid discrete/continuous dynamic systems. Computers & Chemical Engineering 24(9-10), 2171–2182 (2000)CrossRefGoogle Scholar
  2. [CDR99]
    Chu, K.W., Deng, Y., Reinitz, J.: Parallel simulated annealing by mixing of states 1. Journal of Computational Physics 148(2), 646–662 (1999)CrossRefzbMATHGoogle Scholar
  3. [Csi06]
    Csikász-Nagy, A., Battogtokh, D., Chen, K.C., Novák, B., Tyson, J.J.: Analysis of a generic model of eukaryotic cell-cycle regulation. Biophysical Journal 90(12), 4361–4379 (2006)CrossRefGoogle Scholar
  4. [DB08]
    Di Bernardo, M.: Piecewise-smooth dynamical systems: theory and applications. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  5. [DJGH+04]
    De Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bulletin of Mathematical Biology 66(2), 301–340 (2004)CrossRefzbMATHGoogle Scholar
  6. [DMT10]
    Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In: Proceedings of the 13th ACM International Conference on Hybrid systems: Computation and Control, pp. 11–20. ACM, New York (2010)Google Scholar
  7. [FA88]
    Filippov, A.F., Arscott, F.M.: Differential equations with discontinuous righthand sides. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  8. [GR08]
    Gorban, A.N., Radulescu, O.: Dynamic and static limitation in reaction networks, revisited. In: West, D., Marin, G.B., Yablonsky, G.S. (eds.) Advances in Chemical Engineering - Mathematics in Chemical Kinetics and Engineering. Advances in Chemical Engineering, vol. 34, pp. 103–173. Elsevier, Amsterdam (2008)CrossRefGoogle Scholar
  9. [GRW07]
    Gebert, J., Radde, N., Weber, G.W.: Modeling gene regulatory networks with piecewise linear differential equations. European Journal of Operational Research 181(3), 1148–1165 (2007)CrossRefzbMATHGoogle Scholar
  10. [GRZ10]
    Gorban, A.N., Radulescu, O., Zinovyev, A.Y.: Asymptotology of chemical reaction networks. Chemical Engineering Science 65, 2310–2324 (2010)CrossRefGoogle Scholar
  11. [LUK10]
    Liebermeister, W., Uhlendorf, J., Klipp, E.: Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Bioinformatics 26(12), 1528 (2010)CrossRefGoogle Scholar
  12. [MS00]
    Matveev, A.S., Savkin, A.V.: Qualitative theory of hybrid dynamical systems. Birkhäuser, Basel (2000)CrossRefzbMATHGoogle Scholar
  13. [NT04]
    Novak, B., Tyson, J.J.: A model for restriction point control of the mammalian cell cycle. Journal of Theoretical Biology 230(4), 563–579 (2004)CrossRefGoogle Scholar
  14. [RGZL08]
    Radulescu, O., Gorban, A.N., Zinovyev, A., Lilienbaum, A.: Robust simplifications of multiscale biochemical networks. BMC Systems Biology 2(1), 86 (2008)CrossRefGoogle Scholar
  15. [SV87]
    Savageau, M.A., Voit, E.O.: Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Mathematical Biosciences 87(1), 83–115 (1987)CrossRefzbMATHGoogle Scholar
  16. [SWM+07]
    Shorten, R., Wirth, F., Mason, O., Wulff, K., King, C.: Stability Criteria for Switched and Hybrid Systems. SIAM Review-The Flagship Journal of the Society for Industrial and Applied Mathematics 49(4), 545–592 (2007)zbMATHGoogle Scholar
  17. [Tav87]
    Tavernini, L.: Differential automata and their discrete simulators. Nonlinear Anal. Theory Methods Applic. 11(6), 665–683 (1987)CrossRefzbMATHGoogle Scholar
  18. [Tys91]
    Tyson, J.J.: Modeling the cell division cycle: cdc2 and cyclin interactions. Proceedings of the National Academy of Sciences of the United States of America 88(16), 7328 (1991)CrossRefGoogle Scholar
  19. [Vak02]
    Vakulenko, S.: Complexité dynamique des réseaux de Hopfield: Dynamical complexity of the Hopfield networks. Comptes Rendus Mathematique 335(7), 639–642 (2002)CrossRefzbMATHGoogle Scholar
  20. [VG03]
    Vakulenko, S., Grigoriev, D.: Complexity of gene circuits, pfaffian functions and the morphogenesis problem. Comptes Rendus Mathematique 337(11), 721–724 (2003)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vincent Noel
    • 1
    • 2
  • Sergei Vakulenko
    • 4
  • Ovidiu Radulescu
    • 2
    • 3
  1. 1.Université de Rennes 1 - CNRS UMR 6625 (IRMAR)RennesFrance
  2. 2.DIMNP - UMR 5235 CNRS/UM1/UM2Université de Montpellier 2Montpellier Cedex 5France
  3. 3.INRIA Rennes Bretagne AtlantiqueRennesFrance
  4. 4.Institute of PrintSt. PetersburgRussia

Personalised recommendations