Skip to main content

Attenuation Models in Photoacoustics

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2035))

Summary

The aim of this chapter is to review attenuation models in photoacoustic imaging and discuss their causality properties. We also derive integro-differential equations which the attenuated waves are satisfying and highlight the ill–conditionness of the inverse problem for calculating the unattenuated wave from the attenuated one, which has been discussed in Chap. 3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Agranovsky, P. Kuchment, Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed, Inv. Probl. 23(5), 2089–2102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. E.J. Beltrami, M.R. Wohlers, Distributions and the Boundary Values of Analytic Functions. Academic Press, New York and London (1966)

    MATH  Google Scholar 

  3. P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier, G. Paltauf, Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors. Inverse Probl. 23(6), 65–80 (2007)

    Article  Google Scholar 

  4. P. Burgholzer, H. Grün, M. Haltmeier, R. Nuster, G. Paltauf, in Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors. ed. by A.A. Oraevsky, L.V. Wang, Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics. vol. 6437 Proceedings of SPIE, p. 643724. SPIE (2007)

    Google Scholar 

  5. P. Burgholzer, H. Roitner, J. Bauer-Marschallinger, G. Paltauf, Image Reconstruction in Photoacoustic Tomography Using Integrating Detectors Accounting for Frequency-Dependent Attenuation. vol. 7564 Proc. SPIE p. 75640O. (2010)

    Google Scholar 

  6. W. Chen, S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115(4), 1424–1430 (2004)

    Article  MathSciNet  Google Scholar 

  7. W.F. Cheong, S.A. Prahl, A.J. Welch, A review of the optical properties of biological tissues. IEEE J. Quantum Electron 26(12), 2166–2185 (1990)

    Article  Google Scholar 

  8. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 1, Springer, New York (2000)

    Google Scholar 

  9. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 2, Springer, New York (2000)

    Google Scholar 

  10. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5, Springer, New York (2000)

    Google Scholar 

  11. D. Finch, S. Patch, Rakesh, Determining a function from its mean values over a family of spheres. Siam J. Math. Anal. 35(5), 1213-1240 (2004)

    MathSciNet  MATH  Google Scholar 

  12. C. Gasquet, P. Witomski, Fourier Analysis and Applications. Springer, New York (1999)

    MATH  Google Scholar 

  13. V.E. Gusev, A.A. Karabutov, Laser Optoacoustics. American Institute of Physics, New York (1993)

    Google Scholar 

  14. M. Haltmeier, O. Scherzer, P. Burgholzer, P. Paltauf, Thermoacoustic imaging with large planar receivers. Inverse Probl. 20(5), 1663-1673 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Hanyga, M. Seredynska, Power-law attenuation in acoustic and isotropic anelastic media. Geophys. J. Int. 155, 830-838 (2003)

    Article  Google Scholar 

  16. H. Heuser, Gewöhnliche Differentialgleichungen. 2nd edn. Teubner, Stuttgart (1991)

    MATH  Google Scholar 

  17. L. Hörmander, The Analysis of Linear Partial Differential Operators I. 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  18. Y. Hristova, P. Kuchment, L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Probl. 24(5), 055006 (25pp) (2008)

    Google Scholar 

  19. F. John, Partial Differential Equations. Springer, New York (1982)

    Google Scholar 

  20. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, in Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies. vol. 204 (Elsevier Science B.V., Amsterdam 2006)

    Google Scholar 

  21. L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics. Wiley, New York (2000)

    Google Scholar 

  22. R. Kowar, O. Scherzer, X. Bonnefond, Causality analysis of frequency-dependent wave attenuation. Math. Meth. Appl. Sci., 22, 108–124 (2011). DOI: 10.1002/mma.1344

    Article  MathSciNet  Google Scholar 

  23. R.A. and Kiser, W. L. and Miller, K. D. and Reynolds, H. E.: Thermoacoustic CT: imaging principles. Proc. SPIE, vol. 3916, pp. 150–159 (2000)

    Google Scholar 

  24. G. Ku, X. Wang, G. Stoica, L.V. Wang, Multiple-bandwidth photoacoustic tomography. Phys. Med. Biol. 49, 1329–1338 (2004)

    Google Scholar 

  25. L.A. Kunyansky, Explicit inversion formulae for the spherical mean Radon transform. Inverse Probl. 23, 373–383 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Kuchment, L.A. Kunyansky, Mathematics of thermoacoustic and photoacoustic tomography. Eur. J. Appl. Math. 19, 191–224 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. L.D. Landau, E.M. Lifschitz, Lehrbuch der theoretischen Physik, Band VII: Elastizitätstheorie. Akademie, Berlin (1991)

    Google Scholar 

  28. M.J. Lighthill, Introduction to Fourier Analysis and Generalized Functions. Student’s Edition. Cambridge University Press, London (1964)

    Google Scholar 

  29. A.I. Nachman, J.F. Smith III, R.C. Waag, An equation for acoustic propagation in inhomogeneous media with relaxation losses. J. Acoust. Soc. Am. 88(3) 1584–1595 (1990)

    Article  Google Scholar 

  30. Oraevsky, A. and Wang, L.V., editors: Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, (SPIE Publishing, Bellingham, WA, 2007), Vol. 6437, p. 82

    Google Scholar 

  31. S.K. Patch, O. Scherzer, Special section on photo- and thermoacoustic imaging. Inverse Probl. 23, S1–S122 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. S.K. Patch, A. Greenleaf, Equations governing waves with attenuation according to power law. Technical report, Department of Physics, University of Wisconsin-Milwaukee (2006)

    Google Scholar 

  33. A. Papoulis, The Fourier Integral and its Applications. McGraw-Hill, New York (1962)

    MATH  Google Scholar 

  34. I. Podlubny, in Fractional Differential Equations, Mathematics in Science and Engineering. vol. 198 (Academic Press Inc., San Diego, CA 1999)

    Google Scholar 

  35. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R.W. Köster, V. Ntziachristos, Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat. Photonics 3, 412-417 (2009)

    Article  Google Scholar 

  36. P.J. La Riviére, J. Zhang, M.A. Anastasio, Image reconstruction in optoacoustic tomography for dispersive acoustic media. Opt. Lett. 31(6), 781–783 (2006)

    Article  Google Scholar 

  37. O. Scherzer, H. Grossauer, F. Lenzen, M. Grasmair, M. Haltmeier, Variational Methods in Inmaging. Springer, New York (2009)

    Google Scholar 

  38. N.V. Sushilov, R.S.C. Cobbold, Frequency-domain wave equation and its time-domain solution in attenuating media. J. Acoust. Soc. Am. 115, 1431–1436 (2005)

    Article  Google Scholar 

  39. T.L. Szabo, Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Amer. 96, 491–500 (1994)

    Article  Google Scholar 

  40. T.L. Szabo, Causal theories and data for acoustic attenuation obeying a frequency power law. J. Acoust. Soc. Amer. 97, 14–24 (1995)

    Article  Google Scholar 

  41. A.C. Tam, Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58(2), 381–431 (1986)

    Article  Google Scholar 

  42. E.C. Titchmarch, Theory of Fourier Integrals. Clarendon Press, Oxford (1948)

    Google Scholar 

  43. K.R. Waters, M.S. Hughes, G.H. Brandenburger, J.G. Miller, On a time-domain representation of the Kramers-Krönig dispersion relation. J. Acoust. Soc. Amer. 108(5), 2114–2119 (2000)

    Article  Google Scholar 

  44. K.R. Waters, J. Mobely, J.G. Miller, Causality-Imposed (Kramers-Krönig) Relationships Between Attenuation and Dispersion. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 52(5) 822–833 (2005)

    Article  Google Scholar 

  45. Webb, S., ed. The Physics of Medical Imaging. Institute of Physics Publishing, Bristol, Philadelphia (2000); reprint of the 1988 edition.

    Google Scholar 

  46. L.V. Wang, Prospects of photoacoustic tomography. Med. Phys. 35(12), 5758–5767 (2008)

    Google Scholar 

  47. X.D. Wang, Y.J. Pang, G. Ku, X.Y. Xie, G. Stoica, L.V. Wang, Noninvasive Laser-Induced Photoacoustic Tomography for Structural and Functional in Vivo Imaging of the Brain Nat. Biotechnol. 21(7), 803–806 (2003)

    Article  Google Scholar 

  48. Y. Xu, D. Feng, L.V. Wang, Exact Frequency-Domain Reconstruction for Thermoacoustic Tomography – I: Planar Geometry. IEEE Trans. Med. Imag. 21(7) 823–828 (2002)

    Article  Google Scholar 

  49. Y. Xu, M. Xu, L.V. Wang, Exact Frequency-Domain Reconstruction for Thermoacoustic Tomography – II: Cylindrical Geometry. IEEE Trans. Med. Imag. 21(7), 823–828 (2002)

    Article  Google Scholar 

  50. M. Xu, Y. Xu, L.V. Wang, Time-Domain Reconstruction Algorithms and Numerical Simulation for Thermoacoustic Tomography in Various Geometries. IEEE Trans. Biomed. Eng. 50(9), 1086–1099 (2003)

    Article  Google Scholar 

  51. Y. Xu, L.V. Wang, G. Ambartsoumian, P. Kuchment, Reconstructions in limited-view thermoacoustic tomography. Med. Phys. 31(4), 724–733 (2004)

    Article  Google Scholar 

  52. Xu, M. and Wang, L. V.: Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71 (2005) [7 pages] Article ID 016706.

    Google Scholar 

  53. M. Xu, L.V. Wang, Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77(4), 1–22 (2006) Article ID 041101.

    Google Scholar 

  54. Yosida, K.: Functional analysis. 5th edn., Springer, New York (1995)

    Google Scholar 

  55. Zhang, E.Z. and Laufer, J. and Beard, P.: Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system. (SPIE Publishing, Bellingham, WA, 2007), Vol. 6437, p. 82

    Google Scholar 

  56. H. Zhang, K. Maslov, G. Stoika, V.L. Wang, Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Austrian Science Fund (FWF) within the national research network Photoacoustic Imaging in Biology and Medicine, project S10505-N20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otmar Scherzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kowar, R., Scherzer, O. (2012). Attenuation Models in Photoacoustics. In: Ammari, H. (eds) Mathematical Modeling in Biomedical Imaging II. Lecture Notes in Mathematics(), vol 2035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22990-9_4

Download citation

Publish with us

Policies and ethics