Attenuation Models in Photoacoustics

Part of the Lecture Notes in Mathematics book series (LNM, volume 2035)


The aim of this chapter is to review attenuation models in photoacoustic imaging and discuss their causality properties. We also derive integro-differential equations which the attenuated waves are satisfying and highlight the ill–conditionness of the inverse problem for calculating the unattenuated wave from the attenuated one, which has been discussed in Chap. 3.


Green Function Attenuation Model Causality Property Holomorphic Extension Causal Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work has been supported by the Austrian Science Fund (FWF) within the national research network Photoacoustic Imaging in Biology and Medicine, project S10505-N20.


  1. 1.
    M. Agranovsky, P. Kuchment, Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed, Inv. Probl. 23(5), 2089–2102 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    E.J. Beltrami, M.R. Wohlers, Distributions and the Boundary Values of Analytic Functions. Academic Press, New York and London (1966)zbMATHGoogle Scholar
  3. 3.
    P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier, G. Paltauf, Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors. Inverse Probl. 23(6), 65–80 (2007)CrossRefGoogle Scholar
  4. 4.
    P. Burgholzer, H. Grün, M. Haltmeier, R. Nuster, G. Paltauf, in Compensation of acoustic attenuation for high-resolution photoacoustic imaging with line detectors. ed. by A.A. Oraevsky, L.V. Wang, Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics. vol. 6437 Proceedings of SPIE, p. 643724. SPIE (2007)Google Scholar
  5. 5.
    P. Burgholzer, H. Roitner, J. Bauer-Marschallinger, G. Paltauf, Image Reconstruction in Photoacoustic Tomography Using Integrating Detectors Accounting for Frequency-Dependent Attenuation. vol. 7564 Proc. SPIE p. 75640O. (2010)Google Scholar
  6. 6.
    W. Chen, S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115(4), 1424–1430 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    W.F. Cheong, S.A. Prahl, A.J. Welch, A review of the optical properties of biological tissues. IEEE J. Quantum Electron 26(12), 2166–2185 (1990)CrossRefGoogle Scholar
  8. 8.
    R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 1, Springer, New York (2000)Google Scholar
  9. 9.
    R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 2, Springer, New York (2000)Google Scholar
  10. 10.
    R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol. 5, Springer, New York (2000)Google Scholar
  11. 11.
    D. Finch, S. Patch, Rakesh, Determining a function from its mean values over a family of spheres. Siam J. Math. Anal. 35(5), 1213-1240 (2004)MathSciNetzbMATHGoogle Scholar
  12. 12.
    C. Gasquet, P. Witomski, Fourier Analysis and Applications. Springer, New York (1999)zbMATHGoogle Scholar
  13. 13.
    V.E. Gusev, A.A. Karabutov, Laser Optoacoustics. American Institute of Physics, New York (1993)Google Scholar
  14. 14.
    M. Haltmeier, O. Scherzer, P. Burgholzer, P. Paltauf, Thermoacoustic imaging with large planar receivers. Inverse Probl. 20(5), 1663-1673 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. Hanyga, M. Seredynska, Power-law attenuation in acoustic and isotropic anelastic media. Geophys. J. Int. 155, 830-838 (2003)CrossRefGoogle Scholar
  16. 16.
    H. Heuser, Gewöhnliche Differentialgleichungen. 2nd edn. Teubner, Stuttgart (1991)zbMATHGoogle Scholar
  17. 17.
    L. Hörmander, The Analysis of Linear Partial Differential Operators I. 2nd edn. Springer, New York (2003)zbMATHGoogle Scholar
  18. 18.
    Y. Hristova, P. Kuchment, L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media. Inverse Probl. 24(5), 055006 (25pp) (2008)Google Scholar
  19. 19.
    F. John, Partial Differential Equations. Springer, New York (1982)Google Scholar
  20. 20.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, in Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies. vol. 204 (Elsevier Science B.V., Amsterdam 2006)Google Scholar
  21. 21.
    L.E. Kinsler, A.R. Frey, A.B. Coppens, J.V. Sanders, Fundamentals of Acoustics. Wiley, New York (2000)Google Scholar
  22. 22.
    R. Kowar, O. Scherzer, X. Bonnefond, Causality analysis of frequency-dependent wave attenuation. Math. Meth. Appl. Sci., 22, 108–124 (2011). DOI: 10.1002/mma.1344MathSciNetCrossRefGoogle Scholar
  23. 23.
    R.A. and Kiser, W. L. and Miller, K. D. and Reynolds, H. E.: Thermoacoustic CT: imaging principles. Proc. SPIE, vol. 3916, pp. 150–159 (2000)Google Scholar
  24. 24.
    G. Ku, X. Wang, G. Stoica, L.V. Wang, Multiple-bandwidth photoacoustic tomography. Phys. Med. Biol. 49, 1329–1338 (2004)Google Scholar
  25. 25.
    L.A. Kunyansky, Explicit inversion formulae for the spherical mean Radon transform. Inverse Probl. 23, 373–383 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    P. Kuchment, L.A. Kunyansky, Mathematics of thermoacoustic and photoacoustic tomography. Eur. J. Appl. Math. 19, 191–224 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    L.D. Landau, E.M. Lifschitz, Lehrbuch der theoretischen Physik, Band VII: Elastizitätstheorie. Akademie, Berlin (1991)Google Scholar
  28. 28.
    M.J. Lighthill, Introduction to Fourier Analysis and Generalized Functions. Student’s Edition. Cambridge University Press, London (1964)Google Scholar
  29. 29.
    A.I. Nachman, J.F. Smith III, R.C. Waag, An equation for acoustic propagation in inhomogeneous media with relaxation losses. J. Acoust. Soc. Am. 88(3) 1584–1595 (1990)CrossRefGoogle Scholar
  30. 30.
    Oraevsky, A. and Wang, L.V., editors: Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, (SPIE Publishing, Bellingham, WA, 2007), Vol. 6437, p. 82Google Scholar
  31. 31.
    S.K. Patch, O. Scherzer, Special section on photo- and thermoacoustic imaging. Inverse Probl. 23, S1–S122 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    S.K. Patch, A. Greenleaf, Equations governing waves with attenuation according to power law. Technical report, Department of Physics, University of Wisconsin-Milwaukee (2006)Google Scholar
  33. 33.
    A. Papoulis, The Fourier Integral and its Applications. McGraw-Hill, New York (1962)zbMATHGoogle Scholar
  34. 34.
    I. Podlubny, in Fractional Differential Equations, Mathematics in Science and Engineering. vol. 198 (Academic Press Inc., San Diego, CA 1999)Google Scholar
  35. 35.
    D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R.W. Köster, V. Ntziachristos, Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat. Photonics 3, 412-417 (2009)CrossRefGoogle Scholar
  36. 36.
    P.J. La Riviére, J. Zhang, M.A. Anastasio, Image reconstruction in optoacoustic tomography for dispersive acoustic media. Opt. Lett. 31(6), 781–783 (2006)CrossRefGoogle Scholar
  37. 37.
    O. Scherzer, H. Grossauer, F. Lenzen, M. Grasmair, M. Haltmeier, Variational Methods in Inmaging. Springer, New York (2009)Google Scholar
  38. 38.
    N.V. Sushilov, R.S.C. Cobbold, Frequency-domain wave equation and its time-domain solution in attenuating media. J. Acoust. Soc. Am. 115, 1431–1436 (2005)CrossRefGoogle Scholar
  39. 39.
    T.L. Szabo, Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Amer. 96, 491–500 (1994)CrossRefGoogle Scholar
  40. 40.
    T.L. Szabo, Causal theories and data for acoustic attenuation obeying a frequency power law. J. Acoust. Soc. Amer. 97, 14–24 (1995)CrossRefGoogle Scholar
  41. 41.
    A.C. Tam, Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58(2), 381–431 (1986)CrossRefGoogle Scholar
  42. 42.
    E.C. Titchmarch, Theory of Fourier Integrals. Clarendon Press, Oxford (1948)Google Scholar
  43. 43.
    K.R. Waters, M.S. Hughes, G.H. Brandenburger, J.G. Miller, On a time-domain representation of the Kramers-Krönig dispersion relation. J. Acoust. Soc. Amer. 108(5), 2114–2119 (2000)CrossRefGoogle Scholar
  44. 44.
    K.R. Waters, J. Mobely, J.G. Miller, Causality-Imposed (Kramers-Krönig) Relationships Between Attenuation and Dispersion. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 52(5) 822–833 (2005)CrossRefGoogle Scholar
  45. 45.
    Webb, S., ed. The Physics of Medical Imaging. Institute of Physics Publishing, Bristol, Philadelphia (2000); reprint of the 1988 edition.Google Scholar
  46. 46.
    L.V. Wang, Prospects of photoacoustic tomography. Med. Phys. 35(12), 5758–5767 (2008)Google Scholar
  47. 47.
    X.D. Wang, Y.J. Pang, G. Ku, X.Y. Xie, G. Stoica, L.V. Wang, Noninvasive Laser-Induced Photoacoustic Tomography for Structural and Functional in Vivo Imaging of the Brain Nat. Biotechnol. 21(7), 803–806 (2003)CrossRefGoogle Scholar
  48. 48.
    Y. Xu, D. Feng, L.V. Wang, Exact Frequency-Domain Reconstruction for Thermoacoustic Tomography – I: Planar Geometry. IEEE Trans. Med. Imag. 21(7) 823–828 (2002)CrossRefGoogle Scholar
  49. 49.
    Y. Xu, M. Xu, L.V. Wang, Exact Frequency-Domain Reconstruction for Thermoacoustic Tomography – II: Cylindrical Geometry. IEEE Trans. Med. Imag. 21(7), 823–828 (2002)CrossRefGoogle Scholar
  50. 50.
    M. Xu, Y. Xu, L.V. Wang, Time-Domain Reconstruction Algorithms and Numerical Simulation for Thermoacoustic Tomography in Various Geometries. IEEE Trans. Biomed. Eng. 50(9), 1086–1099 (2003)CrossRefGoogle Scholar
  51. 51.
    Y. Xu, L.V. Wang, G. Ambartsoumian, P. Kuchment, Reconstructions in limited-view thermoacoustic tomography. Med. Phys. 31(4), 724–733 (2004)CrossRefGoogle Scholar
  52. 52.
    Xu, M. and Wang, L. V.: Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71 (2005) [7 pages] Article ID 016706.Google Scholar
  53. 53.
    M. Xu, L.V. Wang, Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77(4), 1–22 (2006) Article ID 041101.Google Scholar
  54. 54.
    Yosida, K.: Functional analysis. 5th edn., Springer, New York (1995)Google Scholar
  55. 55.
    Zhang, E.Z. and Laufer, J. and Beard, P.: Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system. (SPIE Publishing, Bellingham, WA, 2007), Vol. 6437, p. 82Google Scholar
  56. 56.
    H. Zhang, K. Maslov, G. Stoika, V.L. Wang, Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 24, 848–851 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of InnsbruckInnsbruckAustria
  2. 2.Computational Science CenterUniversity of ViennaViennaAustria

Personalised recommendations