Skip to main content
Book cover

Magnetism pp 189–233Cite as

Giant Magnetoresistance. Spin Valves

  • Chapter
  • First Online:
  • 3959 Accesses

Abstract

With different areas of magnetism being incorporated these days into conventional electronics, there is no surprise that magnetoresistance (MR) has found its way into common everyday usage, like the read head in personal computers. But read heads are not the only devices employing the magnetoresistive effect. In fact, MR is one of those fields that result in many other technologically exploitable applications, proving that the magnetoresistive effect cannot be underestimated and has yet to be used at its full potential. Whether rotational speed control devices, high current monitoring devices for power lines, or positioning control devices in robotic systems, MR has been incorporated into systems that require a high sensitivity to magnetic fields. Unfortunately, for many readers it is not always obvious where the consequences of MR are demonstrated within a device, especially when overshadowed by other more dominant physical phenomena. Therefore, this chapter discusses the physical basics of the magnetoresistive effect and emphasizes a few material aspects of what characterizes magnetoresistive configurations. In the end, it is hoped that the existence of the magnetoresistive effect in devices other than read heads is unveiled to the reader who will more readily recognize MR configurations in other applications.In principle, magnetoresistive structures are usually composed of several layers of different materials that can be combinations of ferromagnetic, antiferromagnetic, or nonmagnetic materials, metals or semiconductors, or even organic compounds. Predicted by calculations based on spin-dependent energy bands, and confirmed through a variety of experiments, GMR can be explained by a spin-dependent conductivity in these multilayer stacks, highly influenced by scattering at interfaces between ferromagnetic and nonmagnetic layers. A common feature of MR structures is that their layers are coupled in a specific way, rendering them certain magnetic and electric properties while allowing selective passage for one spin component of the electronic current density. Changes in electrical resistance occur when a varying external magnetic field overcomes the coupling between the layers of the compound. Only those variations in magnetoresistance that are significant enough are of technological interest, and these large MR variations are commonly known as giant magnetoresistance (GMR). In view of the spin-dependent conductivity variation, the GMR mechanism is different from the better known MR phenomena studied in the past. GMR is also different from colossal magnetoresistance (CMR) for which a variety of mechanisms have been proposed such as electron–phonon coupling, double exchange, electron–magnon interactions, or phase- and charge-segregation.Historically, GMR was initially reported in the late 1980s when the results of now celebrated experiments were first published [1, 2]. However, it was not until November 1997 that they made their appearance on the market, when IBM introduced commercial multilayer GMR sensors as magnetic recording read heads. These were incorporated into disk drive products Deskstar 16GP where extremely small magnetic bits at an areal density of 2.69 Gb∕in2 were read. Deskstar 16GP contained 95-mm-diameter disks, each with a storage capacity of more than 3.2GB, resulting in a total data storage capacity of 16.8GB. The current flowed parallel to the layers in the device in a so-called current-in-plane (CIP) geometry, requiring the sensor to be electrically insulated from the conducting magnetic shields. Since then, many advances have occurred in the world of GMR sensors, and it may be easy to forget how it started and where technological progress has taken us in the meantime.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, Phys. Rev. Lett. 61(21), 2472 (1988)

    Article  ADS  Google Scholar 

  2. G. Binasch, P. Grunberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989)

    Article  ADS  Google Scholar 

  3. P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Phys. Rev. Lett 57(19), 2442 (1986)

    Article  ADS  Google Scholar 

  4. S.S.P. Parkin, Giant magnetoresistance and interlayer exchange coupling in polycrystalline transition metal multilayers, in Ultrathin Magnetic Structures, ed. by B. Heinrich, J.A.C. Bland, vol. II (Springer, Berlin, 1994), p. 148

    Google Scholar 

  5. D.K. Ferry, S.M. Goodnick, Transport in Nanostructures (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  6. S. Datta, Quantum Transport, Atom to Transistor (Cambridge University Press, 2005)

    Google Scholar 

  7. M. Johnson, R.H. Silsbee, Phys. Rev. B 37, 3312 (1988)

    Google Scholar 

  8. D.M. Edwards, R.B. Muniz, J. Mathon, IEEE Trans. Magn. MAG-27 3548 (1991)

    Google Scholar 

  9. V.S. Gornakov, V.I. Nikitenko, W.F. Egelhoff, R.D. McMichael, A.J. Shapiro, R.D. Shull, J. Appl. Phys. 91(10), 8272 (2002)

    Article  ADS  Google Scholar 

  10. W.L. Brown, M.F. Jarrold, R.L. McEachern, M. Sosnowski, G. Takaoka, H. Usui, I. Yamada, Nucl. Instrum. Method B59/60, 182 (1991)

    Google Scholar 

  11. C.Y. Duan, B.F.L. Ma, Z.Z. Wei, Q.Y. Zhang Jin, Chin. Phys. B 18(6), 2565 (2009)

    Article  ADS  Google Scholar 

  12. S. Maat, M.J. Carey, E.E. Fullerton, T.X. Le, P.M. Rice, B.A. Gurney, Appl. Phys. Lett. 81(3), 520 (2002)

    Article  ADS  Google Scholar 

  13. M. Patra, M. Thakur, S. Majumdar, S. Giri, J. Phys. Condens. Matter 21, 236004 (2009)

    Article  ADS  Google Scholar 

  14. L. Kong, Q. Pan, M. Li, B. Cui, S.Y. Chou, 56th Ann. Device Res. Conf. Digest 50 (1998)

    Google Scholar 

  15. A. Maeda, T. Tanuma, M. Kume, Mat. Sci. Eng. A 217, 203 (1996)

    Article  Google Scholar 

  16. F. Matsukura, E. Abe, H. Ohno, J. Appl. Phys. 87(9), 6442 (2000)

    Article  ADS  Google Scholar 

  17. M.L. Reed, N.A. El-Masry, H.H. Stadelmaier, M.K. Ritums, M.J. Reed, C.A. Parker, J.C. Roberts, S.M. Bedair, Appl. Phys. Lett. 79(21), 3473 (2001)

    Article  ADS  Google Scholar 

  18. T. Dietl, A. Haury, Y. Merle d’Aubigné, Phys. Rev. B 55, R3347 (1997)

    Google Scholar 

  19. S. von Molnár, H. Munekata, H. Ohno, L.L. Chang, J. Magn. Magn. Mater. 93, 356 (1991)

    Article  ADS  Google Scholar 

  20. Y. Satoh, D. Okazawa, A. Nagashima, J. Yoshino, Physica E 10, 196 (2001)

    Article  ADS  Google Scholar 

  21. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2003)

    Article  ADS  Google Scholar 

  22. X.D. Peng, T.F.W. Zhu, W.G. Wang, Z.H. Huang Cheng, Chin. Phys. B 18(6), 2576 (2009)

    Article  ADS  Google Scholar 

  23. O.G. Heinonen, E.W. Singleton, B.W. Karr, Z. Gao, H.S. Cho, Y. Chen, IEEE Trans. Magn. 44(11), 2465 (2008)

    Article  ADS  Google Scholar 

  24. B.J. Qu, T.L. Ren, H.R. Liu, L.T. Liu, Z.J. Li, IEEE Sens. J. 5(5), 905 (2005)

    Article  Google Scholar 

  25. T. Kim, R.V. Chamberlin, P.A. Bennett, J.P. Bird, Nanotechnology 20, 135401 (2009)

    Article  ADS  Google Scholar 

  26. K. Dumesnil, C. Dufour, S. Fernandez, M. Oudich, A. Avisou, A. Rogalev, F. Wilhelm, J. Phys.: Condens. Matter 21, 236002 (2009)

    Google Scholar 

  27. J. Qiu, P. Luo, K. Li, Y. Zheng, L.H. An, Y. Wu, IEEE Trans. Magn. 40(4), 2260 (2004)

    Article  ADS  Google Scholar 

  28. A.S. Edelstein, G.A. Fischer, M. Pedersen, E.R. Nowak, S.F. Cheng, C.A. Nordman, J. Appl. Phys. 99, 08B317 (2006)

    Google Scholar 

  29. J.P. Sebastia, J.A. Lluch, J.R.L. Vizcaino, J.S. Bellon, IEEE Trans. Instrum. Meas. 58(3), 707 (2009)

    Article  Google Scholar 

  30. H. Li, J. Gaspar, P.P. Freitas, V. Chu, J.P. Conde, IEEE Trans. Magn. 38(5), 3371 (2002)

    Article  ADS  Google Scholar 

  31. H. Li, M. Boucinha, P.P. Freitas, J. Gaspar, V. Chu, J.P. Conde, J. Appl. Phys. 91(10), 7774 (2002)

    Article  ADS  Google Scholar 

  32. M.J. Carey, S. Maat, P. Rice, R.F.C. Farrow, R.F. Marks, A. Kellock, P. Nguyen, B.A. Gurney, Appl. Phys. Lett. 81(6), 1044 (2002)

    Article  ADS  Google Scholar 

  33. C. Fowley, B.S. Chun, J.M.D. Coey, IEEE Trans. Magn. 45(6), 2403 (2009)

    Article  ADS  Google Scholar 

  34. J.R. Childress, M.J. Carey, M.C. Cyrille, K.N. Carey, J.A. Smith, T.D. Katine, A.A.G. Boone, S. Driskill-Smith, K. Maat, C.H. Mackay Tsang, IEEE Trans. Magn. 42(10), 2444 (2006)

    Article  ADS  Google Scholar 

  35. J.F. Bobo, B. Warot-Fonrose, C. Villeneuve, E. Bedel, I. Séguy, IEEE Trans. Magn. 46(6), 2090 (2010)

    Article  ADS  Google Scholar 

  36. M. Johnson, Mater. Sci. Eng. B 31, 199 (1995)

    Article  Google Scholar 

  37. V. Cros, S.F. Lee, G. Faini, A. Cornette, A. Hamzic, A. Fert, J. Magn. Magn. Mater. 165, 512 (1997)

    Article  ADS  Google Scholar 

  38. C. Chapelier, M. El Khatib, P. Perrier, A. Benoit, D. Mailly, in Superconducting Devices and Their Applications, ed. by H. Koch, H. Lubbig (Springer, Berlin, 1991), p. 286

    Google Scholar 

  39. L. Kong, Q. Pan, M. Li, B. Cui, S.Y. Chou, Dev. Res. Conf. Digest 56, 50 (1998)

    Google Scholar 

  40. T. Iwase, Y. Sakuraba, S. Bosu, K. Saito, S. Mitani, K. Takanashi, Appl. Phys. Exp. 2, 063003 (2009)

    Article  ADS  Google Scholar 

  41. K. Muramoto, M. Shiraishi, N. Mitoma, T. Nozaki, T. Shinjo, Y. Suzuki, Appl. Phys. Exp. 2, 123004 (2009)

    Article  ADS  Google Scholar 

  42. B. Georges, J. Grollier, A. Fukushima, V. Cros, B. Marcilhac, D.G. Crete, H.K. Kubota, J.C. Yakushiji, A. Mage, S. Fert, K. Yuasa Ando, Appl. Phys. Exp. 2, 123003 (2009)

    Article  ADS  Google Scholar 

  43. Q. Li-Jie, X. Xiao-Yong, H. Jing-Guo, Chin. Phys. B 18(6), 2589 (2009)

    Article  ADS  Google Scholar 

  44. S. Tehrani, M. Durlam, M. DeHerrera, E. Chen, J. Calder, G. Kerszykowski, Int. Nonvolatile Memory Techn. Conf. 43 (1998)

    Google Scholar 

  45. A.K. Nayak, K.G. Suresh, A.K. Nigam, J. Phys. D: Appl. Phys. 42, 115004 (2009)

    Article  ADS  Google Scholar 

  46. X. Zhu, Y. Sun, D. Shi, H. Lei, S. Zhang, W. Song, Z. Yang, J. Dai, S. Dou, J. Phys. D: Appl. Phys. 42, 185001 (2009)

    Article  ADS  Google Scholar 

  47. J.P.h. Ansermet, J. Phys.: Condens. Matter 10, 6027 (1998)

    Google Scholar 

  48. Z.H. Xiong, D. Wu, Z.V. Vardeny, J. Shi, Nature 427, 821 (2004)

    Article  ADS  Google Scholar 

  49. M. Sekine, T. Watanabe, Y. Tamakawa, T. Shibata, Y. Soda, IEEE Trans. Magn. 42(10), 2321 (2006)

    Article  ADS  Google Scholar 

  50. D.W.D. Williams, Trans. Compon. IEEE, Hybrids Manuf. Technol. 11(10), 36 (1988)

    Google Scholar 

  51. M. Plummer et al. (ed.), The Physics of High Density Recording (Springer, Berlin, 2001)

    Google Scholar 

  52. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, L.W. Molenkamp, Nature 402, 787 (1999)

    Article  ADS  Google Scholar 

  53. R.P. Borges, C. Dennis, J.F. Gregg, E. Jouguelet, K. Ounadjela, I. Petej, S.M. Thompson, M.J. Thornton, J. Phys. D 35, 186 (2002)

    Article  ADS  Google Scholar 

  54. E.J. Torok, S. Zurn, L.E. Sheppard, R. Spitzer, S. Bae, J.H. Judy, W.F. Egelhoff Jr., P.J. Chen, IEEE Int. Magn. Conf. INTERMAG Europe, Digest Tech. Papers p AV8 (2002), ISBN 0–7803–7365–0

    Google Scholar 

  55. T.C. Anthony, J.A. Brug, S. Zhang, IEEE Trans. Magn. 30(6), 3819 (1994).

    Article  ADS  Google Scholar 

  56. K.T. Chan, C. Doran, E.G. Shipton, E.E. Fullerton, IEEE Trans. Magn. 46(6), 2209 (2010)

    Article  ADS  Google Scholar 

  57. S. Prakash, K. Pentek, Y. Zhang, IEEE Trans. Magn. 37(3), 1123 (2001)

    Article  ADS  Google Scholar 

  58. H. Oshima, K. Nagasaka, A. Jogo, T. Ibusuki, Y. Shimizu, A. Tanaka, IEEE Trans. Magn. 41(10), 2929 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stefanita, CG. (2012). Giant Magnetoresistance. Spin Valves. In: Magnetism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22977-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22977-0_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22976-3

  • Online ISBN: 978-3-642-22977-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics