Skip to main content

Dynamic Parameters of Detonation

  • Chapter
  • First Online:
Shock Waves Science and Technology Library, Vol. 6

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 6))

Abstract

A chemically reactive material or mixture can undergo various combustion modes from low-speed flame (cm/s to m/s) to high-speed detonation (km/s) (e.g., [128, 191, 46, 77]). The initiation of a flame or detonation has a threshold character, where the minimum energy ensuring 100% initiation is a fundamental dynamic parameter called the critical energy. While a weak initiation is commonly used for a flame ignition, direct initiation of an unconfined detonation requires a strong ignition source. While many principles of detonation dynamics are applicable to both gas and condensed-phase reactive materials, this chapter will focus on the gas mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abid, S., Dupre, G., Paillard, C.: Oxidation of gaseous unsymmetrical dimethylhydrazine at high temperatures and detonation of UDMH/O2 mixtures. In: Progress in Astronautics and Aeronautics, vol. 153, pp. 162–181. American Institute of Aeronautics and Astronautics, VA (1991)

    Google Scholar 

  2. Afanas’ev, A.N., Bortnikov, L.N.: Reduction of motor toxic by hydrogen addition. In: Proceedings of the 5th International Conference on Technologies and Combustion for a Clean Environment, Lisbon, Portugal, vol. 2, pp. 1075–1077 (1999)

    Google Scholar 

  3. Alekseev, V., Dorofeev, S., Sidorov, V.: Direct initiation of detonations in unconfined gasoline sprays. Shock Waves 6, 67–71 (1996)

    Google Scholar 

  4. Alpert, R.L., Toong, T.: Periodicity in exothermic hypersonic flows about projectiles. Astronaut. Acta 17(4–5), 539–560 (1972)

    Google Scholar 

  5. Aminallah, M., Brossard, J., Vasil’ev A.: Cylindrical detonations in methane-oxygen-nitrogen mixtures. In: Progress in Astronautics and Aeronautics, vol. 153, pp. 203–228. American Institute of Aeronautics and Astronautics, VA (1993)

    Google Scholar 

  6. Atkinson R., Bull D.C., Shuff R.I.: Initiation of spherical detonation in hydrogen–air. Combust. Flame 39, 287–300 (1980)

    Google Scholar 

  7. Austin, J.M., Shepherd, J.E.: Detonations in hydrocarbon fuel blends. Combust. Flame 132, 73–90 (2003)

    Google Scholar 

  8. Bach, G.G., Knystautas, R., Lee, J.H.: Initiation criteria for diverging gaseous detonation. In: 13th Symposium (International) on Combustion, pp. 1097–1110. The Combustion Institute, Pittsburgh (1970)

    Google Scholar 

  9. Bannikov, N.V., Vasil’ev, A.A.: Multipoints ignition of gaseous mixture and its influence on transition of deflagration to detonation. Combust. Explo. Shock Waves 28(3), 65–69 (1992)

    Google Scholar 

  10. Baratov, A.N., Korolchenko, A.Ya. (eds.): Fire-Explosion Hazard of Substances: Both Materials and Means for Suppression (in Russian). Khimia, Moscow (1990)

    Google Scholar 

  11. Bauer, P., Brochet, C., Presles H.N.: The influence of initial pressure on critical diameters of gaseous explosive mixtures. In: Progress in Astronautics and Aeronautics, vol. 94, pp. 118–129. American Institute of Aeronautics and Astronautics, VA (1984)

    Google Scholar 

  12. Bauer, P., Presles, H.N., Heuze, O., Brochet C.: Measurement of cell lengths in the detonation front of hydrocarbon oxygen and nitrogen mixtures at elevated initial pressures. Combust. Flame 64(1), 113–123 (1986)

    Google Scholar 

  13. Bauer, P.A., Dabora, E.K., Manson, N.: Chronology of early research on detonation wave. In: Progress in Astronautics and Aeronautics, vol. 133, pp. 3–18. American Institute of Aeronautics and Astronautics, VA (1991)

    Google Scholar 

  14. Bauwens, L., Williams, D.N., Nikolic, M.: Failure and reignition of one-dimensional detonations: The high activation energy limit. In: Twenty-seventh Symposium (International) on Combustion. The Combustion Institute, Pittsburgh (1998)

    Google Scholar 

  15. Beeson, H.D., McClenagan, R.D., Bishop, C.V., Benz, F.J., Pitz, W.J., Westbrook, C.K., Lee J.H.S.: Detonability of hydrocarbon fuels in air. In: Progress in Astronautics and Aeronautics, vol. 133, pp. 19–36. American Institute of Aeronautics and Astronautics, VA (1991)

    Google Scholar 

  16. Behrens, H., Struth, W., Wecken W.: Studies of hypervelocity firings into mixtures of hydrogen with air or with oxygen. In: 10th Symposium (International) on Combustion. Combustion Institute, Pittsburgh (1964)

    Google Scholar 

  17. Benedick, W.B., Knystautas, R., Lee J.H.S.: Large-scale experiments on the transmission of fuel-air detonations from two-dimensional channels. In: Progress in Astronautics and Aeronautics, vol. 94, pp. 546–555. American Institute of Aeronautics and Astronautics, VA (1984)

    Google Scholar 

  18. Benedick, W.B., Guirao C.M., Knystautas R., Lee J.H.: Critical charge for direct initiation of detonation in gaseous fuel-air mixtures. In: Progress in Astronautics and Aeronautics, vol. 106, pp. 181–202. American Institute of Aeronautics and Astronautics, VA (1986)

    Google Scholar 

  19. Bohon, Yu.A., Shulenin, Yu.V.: The minimal initiation energy for spherical detonation for some hydrogen mixtures (in Russian). Rep. USSR Acad. Sci. 245(3), 623–626 (1979)

    Google Scholar 

  20. Borisov, A.A., Zamansky, V.M., Lisyansky, V.V., Skachkov, G.I., Troshin, K.Ya.: The estimation of critical initiation energy for detonable gaseous system by the ignition delays (in Russian). Chem. Phys. 5(12), 1683–1689 (1986)

    Google Scholar 

  21. Borisov, A.A., Khomik, S.V., Mikhalkin, V.N., Saneev E.V.: Critical energy of direct detonation initiation in gaseous mixtures. In: Progress in Astronautics and Aeronautics, vol. 133, pp. 142–155. American Institute of Aeronautics and Astronautics, VA (1991)

    Google Scholar 

  22. Borissov, A.A., Sharypov, O.V.: Physical model of dynamic structure of the surface of detonation wave. In: Borrisov, A. (ed.) Dynamic Structure of Detonation in Gaseous and Dispersed Media. Fluid Mechanics and its Applications, vol. 5, pp. 27–49. Kluwer, Dordrecht (1991)

    Google Scholar 

  23. Bull, D.C., Elsworth, J.E., Hooper, G., Quinn, C.P.: A study of spherical detonation in mixtures of methane and oxygen diluted by nitrogen. J. Phys. D: Appl. Phys. 9, 1191 (1976)

    Google Scholar 

  24. Bull, D.C., Elsworth, I.E., Hooper, G.: Initiation of spherical detonation in hydrocarbon–air mixtures. Acta Astronaut. 5, 997–1008 (1978)

    Google Scholar 

  25. Bull, D.C., Elsworth, J.E., Shuff, P.J., Metcalfe, E.: Detonation cell structures in fuel-air mixtures. Combust. Flame 45(1), 7–22 (1982)

    Google Scholar 

  26. Bykovskii, F.A., Zhdan, S.A., Vedernikov, E.F.: Continuous spin detonations. J. Propul. Power. 22(6), 1204–1216 (2006)

    Google Scholar 

  27. Carlson, G.A.: Spherical detonations in gas-oxygen mixtures. Combust. Flame 21(3), 383–385 (1973)

    Google Scholar 

  28. Chernayvsky, S.Yu., Baulin, N.N., Mkrtumov, A.S. Flowing of high-speed bullet by hydrogen-oxygen mixture. Combust. Explo. Shock Waves 9(6), 786–791 (1973)

    Google Scholar 

  29. Chernyi, G.G.: Gas Flow with Large Supersonic Speed (in Russian). Fizmatgiz, Moscow (1959)

    Google Scholar 

  30. Chernyi, G.G., Chernayvsky, S.Yu., Baulin, N.N.: Bullet moving with high velocity in mixture of hydrogen-air. Dokladi Akademii Nauk SSSR (in Russian) 290(1), 44–47 (1986)

    Google Scholar 

  31. Ciccarelli, G., Ginsberg, T., Boccio, J., Economos, C., Sato, K., Kinoshita M.: Detonation cell size measurements and predictions in hydrogen–air–steam mixtures at elevated temperatures. Combust. Flame 99(2), 212–220 (1994)

    Google Scholar 

  32. Clavin, P., He, L., Williams, F.A.: Multidimensional stability analysis of overdriven gaseous detonations. Phys. Fluids 9(12), 3764–3785 (1997)

    Google Scholar 

  33. Deledisque, V., Papalexandris, M.V.: Numerical analysis of the rectangular and diagonal structures in three-dimensional detonations. In: Proceedings of the European Combustion Meeting, Louvain Catolique University, Belgium (2005)

    Google Scholar 

  34. Denisov, Yu.N., Troshin, Ya.K.: Pulsating and spinning detonation of gaseous mixtures in tubes. Dokl. Akad. Nauk SSSR. 125(1), 110–113 (1959)

    Google Scholar 

  35. Desbordes, D.: Transmission of overdriven plane detonations: Critical diameter as a function of cell regularity and size. In: Progress in Astronautics and Aeronautics, vol. 114, pp. 170–185. American Institute of Aeronautics and Astronautics, VA (1988)

    Google Scholar 

  36. Desbordes, D., Vachon, M.: Critical diameter of diffraction for strong plane detonations. In: Progress in Astronautics and Aeronautics, vol. 106, pp. 131–143. American Institute of Aeronautics and Astronautics, VA (1986)

    Google Scholar 

  37. Desbordes, D., Guerraud, C., Hamada, L., Presles, H.N.: Failure of the classical dynamic parameters relationships in highly regular cellular detonation systems. In: Progress in Astronautics and Aeronautics, vol. 153, pp. 347–359. American Institute of Aeronautics and Astronautics, VA (1993)

    Google Scholar 

  38. Eckett, C.A., Quirk, J.J., Shepherd, J.E.: The role of unsteadiness in direct initiation of gaseous detonation. J. Fluid Mech. 421, 147–183 (2000)

    Google Scholar 

  39. Edwards, D.H., Hooper G., Morgan J.M.: An experimental investigation of the direct initiation of spherical detonation. Acta Astronaut. 3, 117–130 (1976)

    Google Scholar 

  40. Edwards, D.H., Thomas, G.O., Nettleton, M.A.: The diffraction of a planar detonation wave at an abrupt area change. J. Fluid Mech. 95(1), 79–96 (1979)

    Google Scholar 

  41. Edwards, D.H., Thomas, G.O., Nettleton, M.A.: Diffraction of a planar detonation in various fuel-oxygen mixtures at an area change. In: Progress in Astronautics and Aeronautics, vol. 75, pp. 341–357. American Institute of Aeronautics and Astronautics, VA (1981)

    Google Scholar 

  42. Elsworth, J.E., Shuff, P.J., Ungut, A.: “Galloping” gas detonations in the spherical mode. In: Progress in Astronautics and Aeronautics, vol. 94, pp. 130–150. American Institute of Aeronautics and Astronautics, VA (1984)

    Google Scholar 

  43. Emelianov A., Eremin A., Fortov V., Makeich A., Jander H., Deppe J.: Detonation wave driven by condensation. In: Proceedings of the 4th European Combustion Meeting. CD, Vienna University of Technology, P810055, Vienna (2009)

    Google Scholar 

  44. Erpenbeck, J.J.: Stability of idealized one-reaction detonations. Phys. Fluids. 7, 684–696 (1964)

    Google Scholar 

  45. Erpenbeck, J.J.: Detonation stability for disturbances of small transverse wavelength. Phys. Fluids. 9(7), 1293–1306 (1966)

    Google Scholar 

  46. Fickett, W., Davis, W.C.: Detonation. University of California Press, Berkeley (1979)

    Google Scholar 

  47. Fischer, M., Pantow, E., Kratzel, T.: Propagation, Decay and re-ignition of detonations in technical structures. In: Roy, G., Frolov, S., Kailasanath, K., Smirnov, N. (eds.) Gaseous and Heterogeneous Detonations, Science to Applications, pp. 197–212. ENAS Publishers, Moscow (1999)

    Google Scholar 

  48. Freiwald, H., Koch, H.W.: Spherical detonation on acetylene-oxygen-nitrogen mixtures as a function of nature and strength of initiation. In: 9th Symposium (International) on Combustion, pp. 275–281. Academic, New York (1963)

    Google Scholar 

  49. Frolov, S.M., Basevich, V.Y., Vasil’ev, A.A.: Dual-fuel concept for advanced propulsion. In: Roy, G., Frolov, S., Netzer, D., Borisov, A. (eds.) High-Speed Deflagration and Detonation. Fundamental and Control, pp. 315–332. ELEX-KM Publishers, Moscow (2001)

    Google Scholar 

  50. Fry, R.S., Nicholls, J.A.: Blast initiation and propagation of cylindrical detonations in MAPP-Air mixtures. AIAA J. 12(12), 1703–1708 (1974)

    Google Scholar 

  51. Fujiwara, T., Reddy, K.V.: Propagation mechanism of detonation: Three dimensional phenomenon. In: Memoirs of the Faculty of Engineering, vol. 41(1), pp. 93–111. Nagoya University, Nagoya (1989)

    Google Scholar 

  52. Gavrikov, A.I., Efimenko, A.A., Dorofeev, S.B.: A model for detonation cell size prediction from chemical kinetics. Combust. Flame 120, 19–33 (2000)

    Google Scholar 

  53. Gavrilenko, T.P., Prokhorov, E.S.: Overdriven gaseous detonations. In: Progress in Astronautics and Aeronautics, vol. 87, pp. 244–250. American Institute of Aeronautics and Astronautics, VA (1983)

    Google Scholar 

  54. Gelfand, B.E., Frolov, S.M., Nettleton M.A.: Gaseous detonations – a selective review. Prog. Energy Combust. Sci. 17, 327–371 (1991)

    Google Scholar 

  55. Gilinsky, S.N., Zapraynov, Z.D., Chernyi, G.G.: Supersonic flowing of sphere by combustible mixture. Izvestia Akademii Nauk SSSR: Mechanics of liquid and gas (in Russian) 5, 8–13 (1966)

    Google Scholar 

  56. Guilly, V., Khasainov, B., Presles, H.N., Desbordes, D., Vidal P.: Numerical study of detonation cells under non-monotonous heat release. In: CD: Proceeding of the 20th International Colloquium on the Dynamics of Explosion and Reactive Systems (ICDERS), McGill University, Montreal (2005)

    Google Scholar 

  57. Guirao, C.M., Knystautas, R., Lee, J.H., Benedick, W., Berman M.: Hydrogen-air detonations. In: 19th Symposium (International) on Combustion, pp. 583–590. The Combustion Institute, Pittsburgh (1982)

    Google Scholar 

  58. Hanana, M., Lefebvre, M.H., Van Tiggelen, P.J.: On rectangular and diagonal three-dimensional structures of detonation waves. In: Roy, G., Frolov, S., Kailasanath, K., Smirnov N. (eds.) Gaseous and Heterogeneous Detonations: Science to Applications, pp. 121–130. ENAS Publishers, Moscow (1999)

    Google Scholar 

  59. He, L.: Theoretical determination of the critical conditions for the direct initiation of detonation in hydrogen–oxygen mixtures. Combust. Flame 104, 401–418 (1996)

    Google Scholar 

  60. He, L., Clavin, P.: On the direct initiation of gaseous detonations by an energy source. J. Fluid Mech. 277, 227–248 (1994)

    Google Scholar 

  61. Ichikawa, T., Matsui, A.: Study of cell width and shock pressure in directly initiated spherical detonation. In: CD: Proceedings of the 22nd International Colloquium on the Dynamics of Explosion and Reactive Systems (ICDERS), Lyakov Institute of Heat and Mass Transfer, Minsk (2009)

    Google Scholar 

  62. Jackson, S., Shepherd, J.: Toroidal imploding detonation wave initiator for pulse detonation engines. AIAA J. 45(1), 257–270 (2007)

    Google Scholar 

  63. Jones, D.A., Kemister, G., Tonello, N.A.: Numerical simulation of detonation reignition in H2-O2 mixtures in area expansions. In: Conference Proceedings of the 16th International Colloquium on the Dynamics of Explosions and Reactive Systems, p. 102. University of Mining and Metallurgy, Kraków (1997)

    Google Scholar 

  64. Kailasanath, K., Oran, E.S., Boris, J.P., Young, T.R.: Determination of detonation cell size and the role of transverse waves in two-dimensional detonations. Combust. Flame 61, 199–209 (1985)

    Google Scholar 

  65. Kaneshige, M., Schultz, E., Pfahl, U.J., Shepherd, J.E., Akbar, R.: Detonations in mixtures containing nitrous oxide. In: 22nd International Symposium on Shock Waves, pp. 251–256. Imperial College, London (1999)

    Google Scholar 

  66. Kaneshige, M.J.: Gaseous detonation initiation and stabilization by hypervelocity projectiles. Ph.D. thesis, California Institute of Technology (1999)

    Google Scholar 

  67. Khariton, Yu.B.: About detonability of explosives (in Russian). In: Voprosi teorii vzrivchatih veshestv, vol. 1, pp. 7–28, Moscow-Leningrad, AN USSR (1947)

    Google Scholar 

  68. Knystautas, R., Lee, J.H., Guirao, C.M.: The critical tube diameter for detonation failure in hydrocarbon–air mixtures. Combust. Flame 48, 63–83 (1982)

    Google Scholar 

  69. Knystautas, R., Guirao, C., Lee, J.H., Sulmistras, A.: Measurement of cell size in hydrocarbon–air mixtures and predictions of critical tube diameter, critical initiation energy and detonation limits. In: Progress in Astronautics and Aeronautics, vol. 94, pp. 23–37. American Institute of Aeronautics and Astronautics, VA (1983)

    Google Scholar 

  70. Kogarko, S.M., Adyshkin, V.V., Ljamin, A.G.: Investigations of spherical detonation in gaseous mixtures. Combust. Explo. Shock Waves 2, 22–34 (1965)

    Google Scholar 

  71. Korobeinikov, V.P.: Some Problems of the Point Explosion Theory in Gases (in Russian). Nauka, Moscow (1973)

    Google Scholar 

  72. Korobeinikov, V.P., Levin, V.A., Markov, V.V., Chernyi, G.G.: Propagation of blast waves in a combustible gas. Astronaut. Acta. 17(4–5), 529–537 (1972)

    Google Scholar 

  73. Kumar, R.K.: Detonation cell widths in hydrogen–oxygen-diluent mixtures. Combust. Flame 80(2), 157–169 (1990)

    Google Scholar 

  74. Lee, J.H., Knystautas, R., Yoshikawa, N.: Photochemical initiation of gaseous detonations. Acta Astronaut. 5, 971–982 (1978)

    Google Scholar 

  75. Lee, J.H.: Initiation of gaseous detonation. Ann. Rev. Phys. Chem. 28, 75–104 (1977)

    Google Scholar 

  76. Lee, J.H.S.: Dynamic parameters of gaseous detonations. Ann. Rev. Fluid Mech. 16, 311–336 (1984)

    Google Scholar 

  77. Lee, J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  78. Lee, J.H., Matsui, H.: A comparison of the critical energies for direct initiation of spherical detonations in acetylene-oxygen mixtures. Combust. Flame 28, 61–66 (1977)

    Google Scholar 

  79. Lee, J.H., Ramamurthi, K.: On the concept of the critical size of a detonation kernel. Combust. Flame 27, 331–340 (1976)

    Google Scholar 

  80. Lee, J.H., Lee, B.H.K., Knystautas, R.: Direct initiation of cylindrical gaseous detonations. Phys. Fluids 9(1), 221–222 (1966)

    Google Scholar 

  81. Lefebvre, M.H., Oran, E.S., Kailasanath, K., Van Tiggelen, P.J.: Simulation of cellular structure in a detonation wave. In: Progress in Astronautics and Aeronautics, vol. 153, pp. 64–77. American Institute of Aeronautics and Astronautics, VA (1993)

    Google Scholar 

  82. Lehr, H.F.: Experiments on shock-induced combustion. Astronaut. Acta. 17(4–5), 589–597 (1972)

    Google Scholar 

  83. Levin, V.A., Markov, V.V.: The initiation of detonation wave at concentrating energy admission. Combust. Explo. Shock Waves 11(4), 623–633 (1975)

    Google Scholar 

  84. Levin, V.A., Osinkin, S.F., Markov, V.V.: Direct initiation of detonation in a hydrogen–air mixture. In: Combustion, Detonation, Shock Waves. Proceedings of the Zeldovitch Memorial, vol. 2, pp. 363–365. Russian Section of the Combustion Institute, Moscow (1994)

    Google Scholar 

  85. Levin, V.A., Markov, V.V., Osinkin, S.F.: Initiation of detonation in hydrogen–air mixture by spherical TNT charge. Combust. Explo. Shock Waves 31(2), 91–95 (1995)

    Google Scholar 

  86. Litchfield, E.L., Hay, M.H., Forshey, D.R.: Direct electrical initiation of freely expanding gaseous detonation waves. In: 9th Symposium (International) on Combustion, pp. 282–286. The Combustion Institute, Pittsburgh (1963)

    Google Scholar 

  87. Liu, Y.K., Lee, J.H., Knystautas, R.: Effect of geometry on the transmission of detonation through an orifice. Combust. Flame 56(2), 215–225 (1984)

    Google Scholar 

  88. Macek, A.: Effect of additives on formation of spherical detonation waves in hydrogen–oxygen-mixtures. AIAA J. 1(8), 1915–1918 (1963)

    Google Scholar 

  89. Makeev, V.I., Gostintsev, Ju.A., Strogonov, V.V., Bochon, Ju.A., Chernushkin, Ju.N., Kulikov, V.N.: Burning and detonation of hydrogen–air mixes in free volumes. Combust. Explo. Shock Waves 19(5), 16–18 (1983)

    Google Scholar 

  90. Manson, N., Dabora, E.K.: Chronology of research on detonation waves: 1920–1950. In: Progress in Astronautics and Aeronautics, vol. 153, pp. 3–42. American Institute of Aeronautics and Astronautics, VA (1993)

    Google Scholar 

  91. Manson, N., Brochet, C., Brossard, J., Pujol, Y.: Vibration phenomena and instability of self-sustained detonation in gases. In: 9th Symposium (International) on Combustion, pp. 461–469. The Combustion Institute, Pittsburgh (1962)

    Google Scholar 

  92. Manzhalei, V.I.: Detonation regimes of gases in capillaries. Combust. Explo. Shock Waves 28(3), 296–301 (1992)

    Google Scholar 

  93. Manzhalei, V.I, Mitrofanov, V.V., Subbotin, V.A.: Measurement of inhomogeneities of a detonation front in gas mixtures at elevated pressures. Combust. Explo. Shock Waves 10, 89–95 (1974)

    Google Scholar 

  94. Manzhalei, V.I, Subbotin, V.A.: Experimental Investigation of Stability of Overdriven Detonation in Gases. Combust. Explo. Shock Waves 12(6), 935–942 (1976)

    Google Scholar 

  95. Matsui, H.: On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures. In: 17th Symposium (International) Combustion Proceedings, pp. 1269–1280. The Combustion Institute, Pittsburgh (1979)

    Google Scholar 

  96. Matsui, H., Lee, J.H.: Influence of electrode geometry and spacing on the critical energy for direct initiation of spherical gaseous detonations. Combust. Flame 27, 217–220 (1976)

    Google Scholar 

  97. Matsui, H., Lee, J.H.: On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures. In: 17th Symposium (International) on Combustion, pp. 1269–1280. The Combustion Institute, Pittsburgh (1978)

    Google Scholar 

  98. McVey, J.B., Toong, T.: Mechanism of instabilities of exothermic hypersonic blunt-body flows. Combust. Sci. Technol. 3, 63–76 (1971)

    Google Scholar 

  99. Mitrofanov, V.V.: Some critical phenomena in detonations connected to losses of an impulse. Combust. Explo. Shock Waves 19(4), 169–174 (1983)

    Google Scholar 

  100. Mitrofanov, V.V., Soloukhin, R.I.: About diffraction of a multifront detonation wave (in Russian). Rep. USSR Acad. Sci. 159(5), 1003–1006 (1964)

    Google Scholar 

  101. Moen, I., Funk, J., Ward, S., Rude, G., Thibault, P.: Detonation length scales for fuel–air explosives. In: Progress in Astronautics and Aeronautics, vol. 94, pp. 55–79. American Institute of Aeronautics and Astronautics, VA (1985)

    Google Scholar 

  102. Moen, I., Sulmistras, A., Thomas, G., Bjerketvedt, D., Thibault, P.: The influence of cellular regularity on the behaviour of gaseous detonations. In: Progress in Astronautics and Aeronautics, vol. 106, pp. 220–243. American Institute of Aeronautics and Astronautics, VA (1986)

    Google Scholar 

  103. Moen, I.O., Murray, S.B., Bjerketvedt, D., Rinnan, A., Knystautas, R., Lee, J.H.: Diffraction of detonation from tubes into a large fuel-air explosive cloud. In: 19th Symposium (International) on Combustion, pp. 635–644. The Combustion Institute, Pittsburgh (1982)

    Google Scholar 

  104. Moen, I.O., Ward, S.A., Thibault, P.A., Lee, J.H., Knystautas, R., Dean, T., Westbrook, C.K.: The influence of diluents and inhibitors on detonations. In: 20th Symposium (International) on Combustion Proceedings, pp. 1717–1726. The Combustion Institute, Pittsburgh (1985)

    Google Scholar 

  105. Munday, G., Ubbelohde, A.R., Wood, I.F.: Marginal detonation in cyanogen-oxygen mixtures. Proc. Roy. Soc. A 306(1485), 179–184 (1968)

    Google Scholar 

  106. Murray, S.B., Lee, J.H.: On the transformation of planar detonations to cylindrical detonation. Combust. Flame 52(3), 269–289 (1983)

    Google Scholar 

  107. Murray, S., Thibault, P., Moen, I., Knystautas, R., Lee, J., Sulmistras, A.: Initiation of hydrogen–air detonations by turbulent fluorine-air jets. In: Progress in Astronautics and Aeronautics, vol. 133, pp. 91–117. American Institute of Aeronautics and Astronautics, VA (1991)

    Google Scholar 

  108. Murray, S.B., Thibault, P.A., Zhang, F., Bjerketvedt, D., Sulmistras, A., Thomas, G.O., Jenssen, A., Moen, I.O.: The role of energy distribution on the transmission of detonation. In: Roy, G.D., Frolov, S.M., Netzer, D.W., Borisov, A.A. (eds.) Detonation and High-Speed Deflagration: Fundamentals and Control, vol. 6/18, pp. 139–162. Elex-KM Publisher, Moscow (2001)

    Google Scholar 

  109. Ng, H.D., Radulescu, M.I., Higgins, A.J., Nikiforakis, N., Lee, J.H.S.: Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics. Combust. Theor. Model. 9(3), 385–401 (2005)

    Google Scholar 

  110. Nicholls, J.A., Dabora, E.K., Gealer, R.L.: Studies in connection with stabilized gaseous detonation waves. In: 7th Symposium (International) on Combustion, pp. 766–772. Combustion Institute, Pittsburgh (1958)

    Google Scholar 

  111. Nicholls, J., Sichel, M., Fry, R., Glass, D.: Theoretical and experimental study of cylindrical shock and heterogeneous detonation waves. Acta Astronaut. 1, 385–404 (1974)

    Google Scholar 

  112. Nicholls, J.A., Sichel, M., Gabrijel, Z., Oza, R.D., Vandermolen, R.: Detonability of unconfined natural gas-air clouds. In: 17th Symposium (International) on Combustion, pp. 1223–1234. Combustion Institute, Pittsburgh (1978)

    Google Scholar 

  113. Nikolaev, Yu.A., Vasil’ev, A.A., Ulianitsky, V.Yu.: Gas detonation and its technological adaptation. Combust. Explo. Shock Waves 39(4), 22–54 (2003)

    Google Scholar 

  114. Ohyagi, S., Yoshihashi, T., Harigaya, Y.: Direct initiation of planar detonation waves in methane/oxygen/nitrogen mixtures. In: Progress in Astronautics and Aeronautics, vol. 94, pp. 3–22. American Institute of Aeronautics and Astronautics, VA (1983)

    Google Scholar 

  115. Oran, E., Boris, J.: Numerical Simulation of Reactive Flow. Elsevier, New York (1987)

    Google Scholar 

  116. Oran, E.S., Boris, J.P., Young, T., Flanigan, M., Burks, T., Picone, M.: Numerical simulations of detonations in hydrogen–air and methane-air mixtures. In: 18th Symposium (International) on Combustion, pp. 1641–1649. The Combustion Institute, Pittsburgh (1981)

    Google Scholar 

  117. Oran, E.S., Young, T.R., Boris, J.P., Picone, J.M., Edwards, D.H.: A study of detonation structure: The formation of unreacted gas pockets. In: 19th Symposium (International) on Combustion, pp. 573–582. The Combustion Institute, Pittsburgh (1982)

    Google Scholar 

  118. Oran, E.S., Weber, J.W., Jr., Stefaniw, E.I., Lefebvre, M.H., Anderson, J.D., Jr.: A numerical study of a two-dimensional H2-O2-Ar detonation using a detailed chemical reaction model. Combust. Flame 113, 147–163 (1998)

    Google Scholar 

  119. Papavassiliou, J., Makris, A., Knystautas, R., Lee, J.: Measurements of cellular structure in spray detonation. In: Progress in Astronautics and Aeronautics, vol. 154, pp. 148–169. American Institute of Aeronautics and Astronautics, VA (1993)

    Google Scholar 

  120. Pedley, M.D., Bishop, C.V., Benz, F.J., Bennett, C.A., McClenagan, R.D., Fenton, D.L., Knystautas, R., Lee, J.H., Peraldi, O., Dupre, G., Shepherd, J.E.: Hydrazine vapor detonations. In: Progress in Astronautics and Aeronautics, vol. 114, pp. 45–63. American Institute of Aeronautics and Astronautics, VA (1988)

    Google Scholar 

  121. Presles, H.N., Desbordes, D.: Non-ideal behavior of multi-headed self-sustained gaseous detonation. In: CD – International Conference on Combustion and Detonation: Zel’dovich Memorial II, Moscow (2004)

    Google Scholar 

  122. Presles, H.N., Desbordes, D., Guirard, M., Guerraud, C.: Gaseous nitromethane and nitromethane-oxygen mixture, a new detonation structure. Shock Waves 6, 111–114 (1996)

    Google Scholar 

  123. Radulescu, M.I., Higgins, A.J., Murray, S.B., Lee, J.H.S.: An experimental investigation of the direct initiation of cylindrical detonations. J. Fluid Mech. 480, 1–24 (2003)

    Google Scholar 

  124. Rinnan, A.: Transmission of detonation through tubes and orifices. In: Fuel-Air Explosions, pp. 553–564. University of Waterloo Press, Waterloo (1982)

    Google Scholar 

  125. Ruegg, F.W., Dorsey, W.W.: General discussion. In: 9th Symposium (International) on Combustion, pp. 476–477. The Combustion Institute, Pittsburgh (1962)

    Google Scholar 

  126. Sedov, L.I.: The Methods of Similarity and Dimensions in Mechanics (in Russian). Nauka, Moscow (1987)

    Google Scholar 

  127. Sichel, M.: A simple analysis of the blast initiation of detonations. Acta Astronaut. 4(3–4), 409–424 (1977)

    Google Scholar 

  128. Shelkin, K.I., Troshin, Ya.K.: Gasdynamics of Combustion (in Russian). USSR Academy of Science, Moscow (1963)

    Google Scholar 

  129. Shepherd, J.E.: Chemical kinetics and cellular structure of detonations in hydrogen sulfide and air. In: Progress in Astronautics and Aeronautics, vol. 106, pp. 294–320. American Institute of Aeronautics and Astronautics, VA (1986)

    Google Scholar 

  130. Shepherd, J.E.: Chemical kinetics of hydrogen–air-diluent detonations. In: Progress in Astronautics and Aeronautics, vol. 106, pp. 263–293. American Institute of Aeronautics and Astronautics, VA (1986)

    Google Scholar 

  131. Shepherd, J.E., Moen, I.O., Murray, S.B., Thibault, P.A.: Analyses of the cellular structure of detonations. In: 21st Symposium (International) on Combustion Proceedings, pp. 1649–1658. The Combustion Institute, Pittsburgh (1988)

    Google Scholar 

  132. Shulenin, Yu.V., Bohon, Yu.A.: The minimal initiation energy of gaseous mixtures in unlimited area (in Russian). Rep. USSR Acad. Sci. 257(3), 680–683 (1981)

    Google Scholar 

  133. Stamps, D.W., Tieszen, S.R.: The influence of initial pressure and temperature on hydrogen–air-diluent detonations. Combust. Flame 83(3), 353–364 (1991)

    Google Scholar 

  134. Stewart, D.S., Bdzil, J.B.: The shock dynamics of stable multi-dimensional detonation. Combust. Flame 12, 311–323 (1988)

    Google Scholar 

  135. Stewart, D.S., Kasimov, A.R.: State of detonation stability theory and its application to propulsion. J. Propul. Power. 22(6), 1230–1244 (2006)

    Google Scholar 

  136. Stewart, D.S., Aslam, T.D., Yao, J.: On the evolution of cellular detonation. In: 26th Symposium (International) on Combustion, pp. 2981–2989. The Combustion Institute, Pittsburgh (1996)

    Google Scholar 

  137. Strehlow, R.A.: Multi-dimensional detonation wave structure. Astronaut. Acta. 15(5), 345–357 (1970)

    Google Scholar 

  138. Strehlow, R.A., Engel, C.D.: Transverse waves in detonations: II. Structure and spacing in H2-O2, C2H2-O2, C2H4-O2 and CH4-O2 systems. AIAA J. 7(3), 492–496 (1969)

    Google Scholar 

  139. Strehlow, R.A., Liaugminas, R., Watson, R.H., Eyman, J.R.: Transverse wave structure in detonations. In: 11th Symposium (International) on Combustion, pp. 683–692. The Combustion Institute, Pittsburgh (1967)

    Google Scholar 

  140. Strehlow, R.A., Maurer, R.E., Rajan, S.: Transverse waves in detonations: I. Spacings in the hydrogen–oxygen system. AIAA J. 7(2), 323–328 (1969)

    Google Scholar 

  141. Taki, S., Fujiwara, T.: Numerical analysis of two-dimensional nonsteady detonations. AIAA J. 16, 73–77 (1978)

    Google Scholar 

  142. Tieszen, S.R., Sherman, M.P., Benedick, W.B., Shepherd, J.E., Knystautas, R., Lee, J.H.S.: Detonation cell size measurements in hydrogen–air-steam mixtures. In: Progress in Astronautics and Aeronautics, vol. 106, pp. 205–219. American Institute of Aeronautics and Astronautics, VA (1986)

    Google Scholar 

  143. Tieszen, S., Stamps, D., Westbrook, C., Pitts, W.: Gaseous hydrocarbon–air detonations. Combust. Flame 84(3), 376–390 (1991)

    Google Scholar 

  144. Troshin, K.Ya.: The initiation energy for divergent detonation waves (in Russian). Rep. USSR Acad. Sci. 247(4), 887–889 (1979)

    Google Scholar 

  145. Trotsyuk, A.V., Ulianitsky, V.Yu.: About parameters of detonation waves in gas at concentrated energy initiation. Combust. Explo. Shock Waves 19(6), 76–82 (1983)

    Google Scholar 

  146. Tsuboi, N., Hayashi, A.K.: Numerical simulation of continuous spinning detonation in a circular tube. In: Roy, G., Frolov, S., Sinibaldi, J. (eds.) Pulsed and Continuous Detonations, pp. 186–192. Torus Press Ltd, Moscow (2006)

    Google Scholar 

  147. Tsuboi, N., Asahara, M., Eto, K., Hayashi, A.K.: Numerical simulation of spinning detonation in square tube. Shock Waves 18(4), 329–344 (2008)

    Google Scholar 

  148. Ul’yanitskii, V.Yu.: Closed model of direct initiation by gas detonation, taking account of instability II. Nonpoint initiation. Combust. Explo. Shock Waves 16(4) 427–434 (1980)

    Google Scholar 

  149. Ul’yanitskii, V.Yu.: Closed model of direct initiation of gas detonation taking account of instability. I. Point initiation. Combust. Explo. Shock Waves 16(3) 331–341 (1980)

    Google Scholar 

  150. Ul’yanitsky, V.Yu.: Investigation of galloping regime of gaseous detonation. Combust. Explo. Shock Waves 17(1), 118–124 (1981)

    Google Scholar 

  151. Urtiew, P.A., Tarver, C.M.: Effects of cellular structure on the behaviour of gaseous detonation waves under transient conditions. In: Progress in Astronautics and Aeronautics, vol. 75, pp. 370–384. American Institute of Aeronautics and Astronautics, VA (1981)

    Google Scholar 

  152. Vandermeiren, M., Van Tiggelen, P.: Cellular structure in detonation of acetylene-oxygen mixtures. In: Progress in Astronautics and Aeronautics, vol. 94, pp. 104–117. American Institute of Aeronautics and Astronautics, VA (1984)

    Google Scholar 

  153. Vandermeiren, M., Van Tiggelen, P.: Role of an inhibitor on the onset of gas detonations in acetylene mixtures. In: Progress in Astronautics and Aeronautics, vol. 114, pp. 186–200. American Institute of Aeronautics and Astronautics, VA (1988)

    Google Scholar 

  154. Vasil’ev, A.A.: The estimation of initiation energy for cylindrical detonation. Combust. Explo. Shock Waves 14(3), 154–155 (1978)

    Google Scholar 

  155. Vasil’ev, A.A.: Research of critical initiation of a gas detonation. Combust. Explo. Shock Waves 19(1), 121–131 (1983)

    Google Scholar 

  156. Vasil’ev, A.A.: The experimental methods and calculating models for definition of the critical initiation energy of multifront detonation wave. In: Proceedings of the 16th International Colloquium on the Dynamics of Explosion and Reactive Systems (ICDERS), pp. 152–155. University of Mining and Metallurgy, AGH, Cracow (1987)

    Google Scholar 

  157. Vasil’ev, A.A.: Diffraction of multifront detonation. Combust. Explo. Shock Waves 24(1), 99–107 (1988)

    Google Scholar 

  158. Vasil’ev, A.A.: A spatial initiation of multifront detonation. Combust. Explo. Shock Waves 25(1), 113–119 (1989)

    Google Scholar 

  159. Vasil’ev, A.A.: The limits of stationary propagation of gaseous detonation. In: Borissov, A. (ed.) Dynamic structure of detonation in gaseous and dispersed media. Fluid Mechanics and its Applications, vol. 5, pp. 27–49. Kluwer, Dordrecht (1991)

    Google Scholar 

  160. Vasil’ev, A.A.: Near-limiting detonation in channels with porous walls. Combust. Explo. Shock Waves 30(1), 101–106 (1994)

    Google Scholar 

  161. Vasil’ev, A.A.: Near-critical modes of a gas detonation (in Russian). Lavrentyev Institute of Hydrodynamics, Novosibirsk (1995)

    Google Scholar 

  162. Vasil’ev, A.A.: Gaseous fuels and detonation hazards. In: Eisenreih, N. (ed.) Combustion and Detonation (Proceedings of the 28th Fraunhofer ICT-Conference), Karlsruhl, Germany (1997)

    Google Scholar 

  163. Vasil’ev, A.A.: Modeling of detonation combustion of gas mixtures using a high-velocity projectile. Combust. Explo. Shock Waves 33(5), 85–102 (1997)

    Google Scholar 

  164. Vasil’ev, A.A.: A new diffraction estimation of critical initiation energy. In: Proceeding of the Colloquim on Gas, Vapor, Hybrid and Fuel-Air Explosions, pp. 470–481. Safety Consulting Engineers, Schaumburg (1998)

    Google Scholar 

  165. Vasil’ev, A.A.: The character propagation regimes of multifront detonation along convex surface. Combust. Explo. Shock Waves 35(5), 86–92 (1999)

    Google Scholar 

  166. Vasil’ev, A.A.: Optimization of accelerators of deflagration-to-detonation transition. In: Roy, G., Frolov, S., Santoro, R., Tsyganov, S. (eds.) Confined Detonations and Pulse Detonation Engines, pp. 41–48. Torus Press, Moscow (2003)

    Google Scholar 

  167. Vasil’ev, A.A.: Cell size as the main geometric parameter of a multifront detonation waves. J. Propul. Power. 22(6), 1245–1268 (2006)

    Google Scholar 

  168. Vasil’ev, A.A.: Detonation characteristics of synthetic gas. Combust. Explo. Shock Waves 43(6), 90–96 (2007)

    Google Scholar 

  169. Vasil’ev, A.A.: The quasi-steady regimes of wave propagation in active mixtures. Shock Waves 18(4), 245–253 (2008)

    Google Scholar 

  170. Vasil’ev, A.A., Grigor’ev, V.V.: The critical conditions for detonation propagation at sharp expanded channel. Combust. Explo. Shock Waves 16(5), 117–125 (1980)

    Google Scholar 

  171. Vasil’ev, A.A., Kulakov, B.I., Mitrofanov, V.V., Silvestrov, V.V., Titov, V.M.: The initiation of gaseous mixtures by high-velocity bullet (in Russian). Rep. Russ. Acad. Sci. 338(2), 188–190 (1994)

    Google Scholar 

  172. Vasil’ev, A.A., Mitrofanov, V.V., Topchiyan, M.E.: Detonation waves in gases. Combust. Explo. Shock Waves 23(5), 605–623 (1987)

    Google Scholar 

  173. Vasil’ev, A.A., Nikolaev, Yu.A.: The cell model for multifront detonation. Combust. Explo. Shock Waves 12(5), 744–754 (1976)

    Google Scholar 

  174. Vasil’ev, A.A., Pinaev, A.V.: Formation of carbon clusters in deflagration and detonation waves in gas mixtures. Combust. Explo. Shock Waves 44(3), 96–101 (2008)

    Google Scholar 

  175. Vasil’ev, A.A., Trotsyuk, A.V.: Experimental investigation and numerical modeling of expanded multifront detonation wave. Combust. Explo. Shock Waves 39(1), 92–103 (2003)

    Google Scholar 

  176. Vasil’ev, A.A., Trotsyuk, A.V.: Multi-scaled cellular structure of gaseous detonation. In: Korobeinichev, O. (ed.) Proceedings of the 5th International Seminar on Flame Structure. Parallel Ltd. Novosibirsk (2005); CD ISBN 5-98901-004-4, OPr-08

    Google Scholar 

  177. Vasil’ev, A.A., Vasil’ev, V.A.: The steam influence on hydrogen–oxygen and hydrogen–air detonation. In: Conference Proceeding of 16th-International Colloquium on the Dynamics of Explosion and Reactive Systems (ICDERS), pp. 385–388. University of Mining and Metallurgy AGH, Cracow (1997)

    Google Scholar 

  178. Vasil’ev, A.A., Zak, D.V.: Detonation in gaseous jet. Combust. Explo. Shock Waves 22(4), 82–88 (1986)

    Google Scholar 

  179. Vasil’ev, A.A., Topchian, M.E., Ulianitsky, V.Yu.: Influence of initial temperature on parameters of gaseous detonation. Combust. Explo. Shock Waves 15(6), 149–152 (1979)

    Google Scholar 

  180. Vasil’ev, A.A., Nikolaev, Yu.A., Ulyanitsky, V.Yu.: The critical initiation energy for multifront detonation. Combust. Explo. Shock Waves 15(6), 94–104 (1979)

    Google Scholar 

  181. Vasil’ev, A.A., Valishev, A.I., Vasil’ev, V.A., Panfilova, L.V., Topchian, M.E.: Detonation waves parameters at increased pressure and temperatures. Chem. Phys. Rep. 16(9), 1659–1666 (1997)

    Google Scholar 

  182. Vasil’ev, A.A., Valishev, A.I., Vasil’ev, V.A.: The detonation safety of gaseous fuels. Acetylene and cyanogen. In: Conference Proceeding of the 16th-International Colloquium on the Dynamics of Explosion and Reactive Systems (ICDERS), p. 594. University of Mining and Metallurgy AGH, Cracow (1997)

    Google Scholar 

  183. Vasil’ev, A.A., Valishev, A.I., Vasil’ev, V.A., Panfilova, L.V., Topchian, M.E.: Detonation hazards of hydrogen mixtures. In: Proceeding of the Colloquim on Gas, Vapor, Hybrid and Fuel-Air Explosions, pp. 391–413. Safety Consulting Engineers, Schaumburg (1998)

    Google Scholar 

  184. Vasil’ev, A.A., Valishev, A.I., Vasil’ev, V.A., Panfilova, L.V.: Parameters of combustion and detonation of hydrazine and its methyl derivatives. Combust. Explo. Shock Waves 36(3), 81–96 (2000)

    Google Scholar 

  185. Vasil’ev, A.A., Valishev, A.I., Vasil’ev, V.A.: The estimation of parameters of combustion and detonation of hydrocarbon gas-hydrates. Combust. Explo. Shock Waves 36(6), 119–125 (2000)

    Google Scholar 

  186. Vasil’ev, A.A., Ttotsyuk, A.V., Fomin, P.A., Vasil’ev, V.A., Rychkov, V.N., Desbordes, D., Khasainov, B., Presles, H.N., Vidal, P., Demontis, P., Priault, C.: The basic results on reinitiation processes in diffracting multifront detonations, Part 1. Eurasian Chem-Technol. J. 5(4), 279–289 (2003)

    Google Scholar 

  187. Vasil’ev, A.A., Zvegintsev, V.I., Nalivaichenko, D.G.: Detonation waves in supersonic flows of reactive mixtures. Combust. Explo. Shock Waves 42(5), 85–100 (2006)

    Google Scholar 

  188. Vasiljev, A.A.: Initiation of gaseous detonation by a high speed body. Shock Waves 3(4), 321–326 (1994)

    Google Scholar 

  189. Vasiljev, A.A., Nikolaev, Yu.: Closed theoretical model of a detonation cell. Acta Astronaut. 5, 983–996 (1978)

    Google Scholar 

  190. Voitsekhovsky, B.V.: On spinning detonation (in Russian). Dokl. Acad. Sci. SSSR. 114, 717–720 (1957)

    Google Scholar 

  191. Voitsekhovsky, B.V., Mitrofanov, V.V., Topchian, M.E.: Structure of Detonation Front in Gases (in Russian). Siberian Branch USSR Academy Science, Novosibirsk (1963)

    Google Scholar 

  192. Westbrook, C.K.: Chemical kinetics of hydrocarbon oxidation in gaseous detonations. Combust. Flame 46, 191–210 (1982)

    Google Scholar 

  193. Westbrook, C.K., Urtiew, P.A.: Chemical kinetic prediction of critical parameters in gaseous detonations. In: 19th Symposium (International) on Combustion, pp. 615–623. The Combustion Institute, Pittsburgh (1982)

    Google Scholar 

  194. Wolanski, P., Kindracki, J., Fujiwara, T.: An experimental study of small rotating detonation engine. In: Roy, G.D., Frolov, S.M., Sinibali, J. (eds.) Pulsed and Continous Detonation, pp. 332–338. Torus Press, Moscow (2006)

    Google Scholar 

  195. Yao, J., Stewart, D.S.: On the dynamics of multi-dimensional detonation. J. Fluid Mech. 309, 225–275 (1996)

    Google Scholar 

  196. Zeldovich, Ya.B., Kogarko, S.M., Simonov, N.N.: The experimental investigations of spherical gaseous detonation (in Russian). J. Tech. Phys. 26(8), 1744–1768 (1956)

    Google Scholar 

  197. Zhang, F.: Heterogeneous detonation. Springer, Berlin (2009)

    Google Scholar 

  198. Zhang, F., Murray, S., Gerrard, K.: JP-10 vapour detonations at elevated pressures and temperatures. In: CD: Proceedings of the 18th International Colloquium on the Dynamics of Explosion and Reactive Systems (ICDERS), University of Washington, ISBN 0-9711740-0-8, Seattle (2001)

    Google Scholar 

  199. Zhdan, S.A., Mitrofanov, V.V.: A simple model for calculation of initiation energy for geterogeneous and gaseous detonation. Combust. Explo. Shock Waves 21(6), 98–103 (1985)

    Google Scholar 

  200. Zitoun, R., Desbordes, D., Guerraud, C., Deshaies, B.: Direct initiation of detonation in cryogenic gaseous H2-O2 mixtures. Shock Waves 4(6), 331–337 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly A. Vasil’ev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vasil’ev, A.A. (2012). Dynamic Parameters of Detonation. In: Zhang, F. (eds) Shock Waves Science and Technology Library, Vol. 6. Shock Wave Science and Technology Reference Library, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22967-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22967-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22966-4

  • Online ISBN: 978-3-642-22967-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics