Skip to main content

Steady One-Dimensional Detonations

  • Chapter
  • First Online:
Shock Waves Science and Technology Library, Vol. 6

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 6))

Abstract

While treatments of detonation wave propagation using control volume analysis, such as the Chapman–Jouguet (CJ) detonation solution presented in the prior chapter, are very successful in predicting the steady-state, equilibrium properties of detonations, they provide no information about the limits of detonation propagation or the dynamics of detonation waves. Addressing these issues necessitates investigating the structure of the detonation front. To illustrate this point, consider an extremely dilute concentration of fuel in air (e.g., 0.1% of methane in air by volume). If this mixture is entered into a thermochemical equilibrium code, a unique equilibrium CJ detonation solution will be generated. In practice, however, such a dilute mixture is highly unlikely to be able to support detonation wave propagation, since the low post-shock temperatures from the weak leading shock front would result in very slow reaction rates or no perceptible reaction at all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Formally, a Hugoniot is a locus of possible equilibrium end states for a steady wave, so a “partially reacted Hugoniot” is a misnomer.

References

  1. Akyurtlu, A.: An investigation of the structure and detonability limits of hydrogen-chlorine detonations, PhD Thesis, University of Wisconsin-Madison (1975)

    Google Scholar 

  2. Anderson, J.B., Long, L.N.: Direct Monte Carlo simulation of chemical reaction systems: Prediction of ultrafast detonations. J. Chem. Phys. 118(7), 3102–3110 (2003)

    Google Scholar 

  3. Anderson, J.B., Long, L.N.: Direct simulation of pathological detonations. In: Ketsdever, A.D., Muntz, E.P. (eds.) Rarefied Gas Dynamics. American Institute of Physics Conference Series, vol. 663, pp. 186–193 (2003)

    Google Scholar 

  4. Anderson J. Jr.: Hypersonic and High-Temperature Gas Dynamics, AIAA Education Series, 2nd edn., 813pp. AIAA, Restons (2006)

    Google Scholar 

  5. Bauer, P.A., Dabora, E.K., Manson, N.: Chronology of early research on detonation wave. In: Kuhl, A.L., Leyer, J.C., Borisov, A.A., Sirignano, W.A. (eds.) Dynamics of Detonations and Explosions: Detonations. Progress in Astronautics and Aeronautics, vol. 133, pp. 3–18. AIAA, VA (1991)

    Google Scholar 

  6. Brailovsky, I., Sivashinsky G.: On deflagration-to-detonation transition. Combust. Sci. Technol. 130(1), 201–231 (1997)

    Google Scholar 

  7. Brailovsky, I., Sivashinsky, G.: Hydraulic resistance and multiplicity of detonation regimes. Combust. Flame 122(1–2), 130–138 (2000)

    Google Scholar 

  8. Brailovsky, I., Sivashinsky, G.I.: Hydraulic resistance as a mechanism for deflagration-to-detonation transition. Combust. Flame 122(4), 492–499 (2000)

    Google Scholar 

  9. Brailovsky, I., Sivashinsky, G.: Effects of momentum and heat losses on the multiplicity of detonation regimes. Combust. Flame 128(1–2), 191–196 (2002)

    Google Scholar 

  10. Brinkley S.R. Jr., Richardson J.M.: On the structure of plane detonation waves with finite reaction velocity. Symp. Int. Combust. 4(1), 450–457 (1953)

    Google Scholar 

  11. Bykov, V., Goldfarb, I., Gol’dshtein, V., Kagan, L., Sivashinsky, G.: Effects of hydraulic resistance and heat losses on detonability and flammability limits. Combust. Theory Model. 8(2), 413–424 (2004)

    Google Scholar 

  12. Chao, J., Lee, J.H.S.: The propagation mechanism of high speed turbulent deflagrations. Shock Waves 12, 277–289 (2003)

    Google Scholar 

  13. Chase, M.W., Curnutt, J.L., Downey, J.R., Jr., McDonald, R.A., Syverud, A.N., Valenzuela, E.A.: Janaf thermochemical tables, 1982 supplement. J. Phys. Chem. Ref. Data 11(3), 695–940 (1982)

    Google Scholar 

  14. Ciccarelli, G., Dorofeev, S.: Flame acceleration and transition to detonation in ducts. Prog. Energy Combust. Sci. 34(4), 499–550 (2008)

    Google Scholar 

  15. Courant, R., Friedrichs, K.O.: Supersonic Flows and Shock Waves. Interscience, New York (1948)

    Google Scholar 

  16. Cowie, L.L., Rybicki, G.B.: The structure and evolution of galacto-detonation waves: some analytic results in sequential star formation models of spiral galaxies. ApJ 260(2), 504–511 (1982)

    Google Scholar 

  17. Curran, E.T., Heiser, W.H., Pratt, D.T.: Fluid phenomena in scramjet combustion systems. Annu. Rev. Fluid Mech. 28(1), 323–360 (1996)

    Google Scholar 

  18. Dabora E.K., Nicholls J.A., Morrison R.B.: The influence of a compressible boundary on the propagation of gaseous detonations. Symp Int Combust 10(1), 817–830 (1965)

    Google Scholar 

  19. Davis, W.C., Fickett, W.: Detonation. University of California Press, Berkeley (1979)

    Google Scholar 

  20. Dionne, J.-P.: Numerical study of the propagation of non-ideal detonations, PhD Thesis, McGill University, Montreal (2000)

    Google Scholar 

  21. Dionne, J.P., Duquette, R., Yoshinaka, A., Lee, J.H.S.: Pathological Detonations in H2-Cl2. Combust. Sci. Technol. 158(1), 5–14 (2000)

    Google Scholar 

  22. Dionne, J.-P., Ng, H.D., Lee, J.H.S.: Transient development of friction-induced low-velocity detonations. Proc. Combust. Inst. 28(1), 645–651 (2000)

    Google Scholar 

  23. Döring, W.: Über den detonationsvorgang in gasen. Ann. Phys. 435(6–7), 421–436 (1943)

    Google Scholar 

  24. Duff, R.E.: Calculation of reaction profiles behind steady-state shock waves. I. Application to detonation waves. J. Chem. Phys. 28(6), 1193–1197 (1958)

    Google Scholar 

  25. Edwards, D.H., Brown, D.R., Hooper, G., Jones, A.T.: The influence of wall heat transfer on the expansion following a C-J detonation wave. J. Phys. D: Appl. Phys. 3(3), 365–376 (1970)

    Google Scholar 

  26. Erpenbeck, J.J.: Steady quasi-one-dimensional detonations in idealized systems. Phys. Fluids 12(5), 967–982 (1969)

    Google Scholar 

  27. Eyring, H., Powell, R.E., Duffy, G.H., Parlin, R.B.: The stability of detonation. Chem. Rev. 45(1), 69–181 (1949)

    Google Scholar 

  28. Fay, J.A.: Two-dimensional gaseous detonations: Velocity deficit. Phys. Fluids 2(3), 283–289 (1959)

    Google Scholar 

  29. Freedman, W.L., Madore, B.F., Mehta, S.: Galactic detonation waves numerical models illustrating the transition from deterministic to stochastic. ApJ 282(2), 412–426 (1984)

    Google Scholar 

  30. Frost, D., Zhang, F.: Slurry detonation. In: Zhang, F. (ed.) Heterogeneous Detonation, Shock Wave Science and Technology Reference Library, vol. 4, pp. 169–216. Springer, Berlin (2009)

    Google Scholar 

  31. Fujiwara, T., Tsuge, S: Quasi-onedimensional analysis of gaseous free detonations. J. Phys. Soc. Jpn. 33(1), 237–241 (1972)

    Google Scholar 

  32. Gelfand, B.E., Frolov, S.M., Nettleton, M.A.: Gaseous detonations – a selective review. Prog. Energy Combust. Sci. 17(4), 327–371 (1991)

    Google Scholar 

  33. Gerola, H., Seiden, P.E.: Stochastic star formation and spiral structure of galaxies. ApJ 223, 129–135 (1978)

    Google Scholar 

  34. Gordon, S., McBride, B.J.: Computer program for computation of complex chemical equilibrium compositions, rocket performance, incident and reflected shocks, and Chapman-Jouguet detonations. Technical Report NASA SP-273, NASA (1971)

    Google Scholar 

  35. Gordon, P.V., Sivashinsky, G.I.: Pressure diffusivity and low-velocity detonation. Combust. Flame 136(4), 440–444 (2004)

    Google Scholar 

  36. Gross, R., Oppenheim, A.K.: Recent advances in gaseous detonation. ARS J. 29, 173–179 (1959)

    Google Scholar 

  37. Guenoche, H., Le Diuzet, P., Sedes, C.: Influence of the heat-release function on the detonation states. In: Bowen, J.R., Manson, N.N., Oppenheim, A.K. (eds.) Gasdynamics of Detonations and Explosions. Progress in Astronautics and Aeronautics, vol. 75, pp. 387–407. AIAA, VA (1981)

    Google Scholar 

  38. He, L., Clavin, P.: On the direct initiation of gaseous detonations by an energy source. J. Fluid Mech. 277, 227–248 (1994)

    Google Scholar 

  39. Hertzberg, A., Bruckner, A.P., Knowlen, C.: Experimental investigation of ram accelerator propulsion modes. Shock Waves 1, 17–25 (1991)

    Google Scholar 

  40. Heuze, O.: 1899–1909: The Key Years of the Understanding of Shock Wave and Detonation Physics. AIP Conf. Proc. 1195(1), 311–314 (2009)

    Google Scholar 

  41. Jones, H.: A theory of the dependence of the rate of detonation of solid explosives on the diameter of the charge. Proc. R. Soc. Lond. Ser A. Math. Phys. Sci. 189(1018), 415–426 (1947)

    Google Scholar 

  42. Jouguet, E.: MĂ©canique des explosifs, Ă©tude de dynamique chimique. O. Doin & Fils, Paris (1917)

    Google Scholar 

  43. Kagan, L., Sivashinsky, G.: The transition from deflagration to detonation in thin channels. Combust. Flame 134(4), 389–397 (2003)

    Google Scholar 

  44. Kirkwood, J.G., Wood, W.W.: Structure of a steady-state plane detonation wave with finite reaction rate. J. Chem. Phys. 22(11), 1915–1919 (1954)

    Google Scholar 

  45. Klein, R., Krok, J.C., Shepherd, J.E.: Curved quasi-steady detonations: Asymptotic analysis and detailed chemical kinetics. Technical Report FM95-04, Graduate Aeronautical Laboratories, California Institute of Technology (1995)

    Google Scholar 

  46. Knystautas, R., Lee, J.H.: Detonation parameters for the hydrogen-chlorine system. In: Kuhl, A.L., Bowen, J.R., Leyer, J.C., Borisov, A.A. (eds.) Dynamics of Explosions. Progress in Astronautics and Aeronautics, vol. 114, pp. 32–44. AIAA, VA (1988)

    Google Scholar 

  47. Kolesnikov, S., Utkin, A.: Nonclassical steady-state detonation regimes in pressed TNETB. Combust. Explos. Shock Waves 43, 710–716 (2007)

    Google Scholar 

  48. Krehl, P.O.K.: History of Shock Waves, Explosions and Impact: A Chronological and Biographical Reference. Springer, Berlin (2009)

    Google Scholar 

  49. Laffitte, P.: Recherches expérimentales sur l’onde explosive et l’onde de choc. Ann. Phys. 10(4) 623–634 (1925)

    Google Scholar 

  50. Lee, J.H., Lee, B.H.K., Shanfield, I.: Two-dimensional unconfined gaseous detonation waves. 10th Symp. (Int.) Combust. 10(1), 805–815 (1965)

    Google Scholar 

  51. Lee J.H.S.: The Detonation Phenomenon. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  52. Lee, J.H.S., Moen, I.O.: The mechanism of transition from deflagration to detonation in vapor cloud explosions. Prog. Energy Combust. Sci. 6(4), 359–389 (1980)

    Google Scholar 

  53. Makris, A.: The Propagation of Gaseous Detonations in Porous Media. PhD Thesis, McGill University, Montreal (2003)

    Google Scholar 

  54. Makris, A., Shafique, H., Lee, J., Knystautas, R.: Influence of mixture sensitivity and pore size on detonation velocities in porous media. Shock Waves 5(1), 89–95 (1995)

    Google Scholar 

  55. Manson, N., Dabora, E.: Chronology of research on detonation waves: 1920–1950. In: Kuhl, A.L., Leyer, J.C., Borisov, A.A., Sirignano, W.A. (eds.) Dynamic Aspects of Detonations. Progress in Astronautics and Aeronautics, vol. 153, pp. 3–39. AIAA, VA (1993)

    Google Scholar 

  56. McBride, B.J., Gordon, S.: Computer program for calculation of complex chemical equilibrium compositions and applications II. Users manual and program description. Technical Report NASA RP-1311, NASA (1996)

    Google Scholar 

  57. Mikhel’son, V.A.: On the normal ignition velocity of explosive gaseous mixtures. Scientific Papers of the Moscow Imperial University on Mathematics and Physics 10, 1–93 (1893)

    Google Scholar 

  58. von Neumann, J.: Theory of detonation waves. Technical Report OSRD-549, National Defense Research Committee (1942)

    Google Scholar 

  59. von Neumann, J.: Theory of Detonation Waves, John von Neumann: Collected Works, 1903–1957, vol. 6, pp. 178–218. Pergamon Press, Oxford (1963)

    Google Scholar 

  60. Nikolaev, Yu.A., Fomin, P.A.: Analysis of equilibrium flows of chemically reacting gases. Combust. Explos. Shock Waves 18(1), 53–58 (1982)

    Google Scholar 

  61. Oran, E.S.: Astrophysical combustion. Proc. Combust. Inst. 30(2), 1823–1840 (2005)

    Google Scholar 

  62. Oran, E.S., Boris, J.P.: Numerical Simulation of Reactive Flow. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  63. Paillard, C., Dupre, G., Lisbet, R., Combourieu, J., Fokeev, V.P., Gvozdeva, L.G.: A study of hydrogen azide detonation with heat transfer at the wall. Acta Astronaut. 6(3–4), 227–242 (1979)

    Google Scholar 

  64. Parker, E.N.: Dynamics of the interplanetary gas and magnetic fields. ApJ 128, 664–676 (1958)

    Google Scholar 

  65. Peraldi, O., Knystautas, R., Lee, J.H.: Criteria for transition to detonation in tubes. 21st Symp. (Int.) Combust. 21(1), 1629–1637 (1988)

    Google Scholar 

  66. Pinaev, A.V., Lyamin, G.A.: Fundamental laws governing subsonic and detonating gas combustion in inert porous media. Combust. Explos. Shock Waves 25(4), 448–458 (1989)

    Google Scholar 

  67. Powers, J., Paolucci, S.: Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry. AIAA J. 43, 1088–1099 (2005)

    Google Scholar 

  68. Radulescu, M.I.: The propagation and failure mechanism of gaseous detonations: Experiments in porous-walled tubes. PhD Thesis, McGill University, Montreal (2003)

    Google Scholar 

  69. Radulescu, M.I., Hanson, R.K.: Effect of heat loss on pulse-detonation-engine flow fields and performance. J. Propul. Power 21(2), 274–285 (2005)

    Google Scholar 

  70. Radulescu, M.I., Lee, J.H.S.: The failure mechanism of gaseous detonations: Experiments in porous wall tubes. Combust. Flame 131(1–2), 29–46 (2002)

    Google Scholar 

  71. Radulescu, M.I., Sharpe, G.J., Law, C.K., Lee, J.H.S.: The hydrodynamic structure of unstable cellular detonations. J. Fluid Mech. 580, 31–81 (2007)

    Google Scholar 

  72. Rozing, V.O., Khariton, Yu.B.: The detonation cutoff of explosive substances when the charge diameters are small. Dokl. Akad. Nauk. SSSR 26(4), 360–361 (1940)

    Google Scholar 

  73. Sasoh, A., Knowlen, C.: Ram accelerator operation analysis in thermally choked and transdetonative propulsive modes. Trans. Jpn. Soc. Aeronaut. Space Sci. 40(128), 130–148 (1997)

    Google Scholar 

  74. Shapiro, A.H.: The Dynamics and Thermodynamics of Compressible Fluid Flow, vol. 1. Ronald Press, New York (1953)

    Google Scholar 

  75. Sharpe, G.J.: Linear stability of pathological detonations. J. Fluid Mech. 401, 311–338 (1999)

    Google Scholar 

  76. Sharpe, G.J.: The structure of planar and curved detonation waves with reversible reactions. Phys. Fluids 12(11), 3007–3020 (2000)

    Google Scholar 

  77. Sharpe, G.J., Falle, S.A.E.G.: One-dimensional nonlinear stability of pathological detonations. J. Fluid Mech. 414, 339–366 (1999)

    Google Scholar 

  78. Shchelkin, K.I.: Influence of the tube walls roughness on the onset and propagation of detonation in gases. Zh. Eksp. Teor. Fiz. 10, 823–827 (1940)

    Google Scholar 

  79. Sichel, M., David, T.S.: Transfer behind detonations in H2-O2 mixtures. AIAA J. 4(6), 1089–1090 (1966)

    Google Scholar 

  80. Skinner, J.H., Jr.: Friction and heat-transfer effects on the nonsteady flow behind a detonation. AIAA J. 5(11), 2069–2071 (1967)

    Google Scholar 

  81. Sleath, J.P., Alexander, P.: A new model of the structure of spiral galaxies based on propagating star formation – I. The galactic star formation rate and Schmidt Law. Mon. Not. R. Astron. Soc. 275, 507–514 (1995)

    Google Scholar 

  82. Sokolik, A.S., Shchelkin, K.I.: Detonation in gas mixtures: The influence of pressure on the velocity of a detonation wave. Acta Physicokhimika SSSR 1, 311–317 (1934)

    Google Scholar 

  83. Sommers, W.P.: Gaseous detonation wave interactions with nonrigid boundaries. ARS J. 31, 1780–1782 (1961)

    Google Scholar 

  84. Sommers, W.P., Morrison, R.B.: Simulation of condensed-explosive detonation phenomena with gases. Phys. Fluids 5(2), 241–248 (1962)

    Google Scholar 

  85. Spalding, D.B.: A theory of inflammability limits and flame-quenching. Proc. R. Soc. Lond. Ser A. Math. Phys. Sci. 240(1220), 83–100 (1957)

    Google Scholar 

  86. De Sterck, H.: Critical point analysis of transonic flow profiles with heat conduction. SIAM J. Appl. Dyn. Syst. 6, 645–662 (2007)

    Google Scholar 

  87. Strehlow, R.A.: Fundamentals of Combustion. International Textbook Co., Scranton, PA (1968)

    Google Scholar 

  88. Tanguay, V., Higgins, A.J.: On the inclusion of frictional work in nonideal detonations. In: Shepherd, J.E. (ed.) 20th International Colloquium on the Dynamics of Explosions and Reactive Systems: Extended Abstracts and Technical Program (2005). ISBN 1600490018, 9781600490019 (CD-ROM)

    Google Scholar 

  89. Tanguay, V., Higgins, A.J., Zhang, F.: A simple analytical model for reactive particle ignition in explosives. Propellants Explos. Pyrotech. 32(5), 371–384 (2007)

    Google Scholar 

  90. Tarver, C.M.: Multiple roles of highly vibrationally excited molecules in the reaction zones of detonation waves. J. Phys. Chem. A 101(27), 4845–4851 (1997)

    Google Scholar 

  91. Tarver C.M.: On the existence of pathological detonation waves. AIP Conf. Proc. 706, 902 (2004). doi: 10.1063/1.1780383

    Google Scholar 

  92. Tarver, C., Forbes, J., Urtiew, P.: Nonequilibrium Zeldovich-von Neumann-Doring theory and reactive flow modeling of detonation. Russ. J. Phys. Chem. B Focus Phys. 1(1), 39–45 (2007)

    Google Scholar 

  93. Taylor, G.I.: The dynamics of the combustion products behind plane and spherical detonation fronts in explosives. Proc. R. Soc. Lond. Ser A. Math. Phys. Sci. 200(1061), 235–247 (1950)

    Google Scholar 

  94. Trubachev, A.: Detonation waves in interstellar gas. Combust. Explos. Shock Waves 33, 72–76 (1997)

    Google Scholar 

  95. Tsuge, S., Furukawa, H., Matsukawa, M., Nakagawa, T.: On the dual properties and the limit of hydrogen-oxygen free detonations waves. Astronaut. Acta 15, 377–386 (1970)

    Google Scholar 

  96. Utkin, A.V., Kolesnikov, S.A., Pershin, S.V.: Effect of the initial density on the structure of detonation waves in heterogeneous explosives. Combust. Explos. Shock Waves 38(5), 590–597 (2002)

    Google Scholar 

  97. Vasil’ev, A.A., Zak, D.V.: Detonation of gas jets. Combust. Explos. Shock Waves 22(4), 463–468 (1986)

    Google Scholar 

  98. Vieille, P.: Rôle des discontinuités dans la propagation des phénomènes explosifs. C. R. Acad. Sci., 130, 413–416 (1900)

    Google Scholar 

  99. Vincenti, W.G., Kruger, C.H.: Introduction to Physical Gas Dynamics. Krieger, Malabar, FL (1965)

    Google Scholar 

  100. Wecken, F.: Non-ideal detonation with constant lateral expansion. In: Fourth Symposium (International) on Detonation, pp. 107–116 (1965)

    Google Scholar 

  101. Wood, W.W., Kirkwood, J.G.: Diameter effect in condensed explosives. The relation between velocity and radius of curvature of the detonation wave. J. Chem. Phys. 22(11), 1920–1924 (1954)

    Google Scholar 

  102. Wood, W.W., Kirkwood, J.G.: On the existence of steady-state detonations supported by a single chemical reaction. J. Chem. Phys. 25(6), 1276–1277 (1956)

    Google Scholar 

  103. Wood, W.W., Parker, F.R.: Structure of a centered rarefaction wave in a relaxing gas. Phys. Fluids 1(3), 230–241 (1958)

    Google Scholar 

  104. Wood, W.W., Salsburg, Z.W.: Analysis of steady-state supported one-dimensional detonations and shocks. Phys. Fluids 3(4), 549–566 (1960)

    Google Scholar 

  105. Yao, J., Stewart, D.S.: On the normal detonation shock velocity-curvature relationship for materials with large activation energy. Combust. Flame 100(4), 519–528 (1995)

    Google Scholar 

  106. Zel’dovich, Ya.B.: On the theory of the propagation of detonations on gaseous system. Zh. Eksp. Teor. Fiz. 10(5), 542–568 (1940)

    Google Scholar 

  107. Zel’dovich, Ya.B., Kompaneets, A.S.: Theory of Detonation. Academic, New York (1960)

    Google Scholar 

  108. Zel’dovich, Ya.B., Ratner, S.B.: Zh. Eksp. Teor. Fiz. 11, 170 (1941)

    Google Scholar 

  109. Zel’dovich, Ya.B., Gel’fand, B.E., Kazhdan, Ya.M., Frolov, S.M.: Detonation propagation in a rough tube taking account of deceleration and heat transfer. Combust. Explos. Shock Waves 23, 342–349 (1987)

    Google Scholar 

  110. Zel’dovich, B., Borisov, A.A., Gelfand, B.E., Frolov Ya, S.M., Mailkov, A.E.: Nonideal detonation waves in rough tubes. In: Kuhl, A.L., Bowen, J.R., Leyer, J.C., Borisov, A.A. (eds.) Dynamics of Explosions. Progress in Astronautics and Aeronautics, vol. 114, pp. 211–231. AIAA, VA (1988)

    Google Scholar 

  111. Zhang, F.: Detonation in reactive solid particle-gas flow. J. Propuls. Power 22, 1289–1309 (2006)

    Google Scholar 

  112. Zhang, F.: Detonation of gas-particle flow. In: Zhang, F. (ed.) Heterogeneous Detonation, Shock Wave Science and Technology Reference Library, vol. 4, pp. 87–168. Springer, Berlin (2009)

    Google Scholar 

Download references

Acknowledgements

This chapter was developed out of discussions with Jimmy Verreault, Oren Petel, François-Xavier Jetté, Patrick Batchelor, and David Mack. Vincent Tanguay contributed to the analysis of the inclusion of the work done by friction in detonations and the Taylor wave analysis in the appendix. Jean-Philippe Dionne’s doctoral dissertation provided a template for much of this chapter. Jenny Chao and Matei Radulescu are thanked for sharing their experimental data. Fan Zhang and Craig Tarver provided helpful and insightful commentary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Higgins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Higgins, A. (2012). Steady One-Dimensional Detonations. In: Zhang, F. (eds) Shock Waves Science and Technology Library, Vol. 6. Shock Wave Science and Technology Reference Library, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22967-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22967-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22966-4

  • Online ISBN: 978-3-642-22967-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics