Monitoring Conformance to the Internal Regulation of an MSc Course Using Ontologies and Rules

  • Gerasimos Papadopoulos
  • Nick Bassiliades
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6866)


The representation of information in the Web today is mainly through natural language and its meaning is only interpretable to users who have studied understand the specific natural language. Thus, in the case of the Internal Regulation (IR) of an MSc course of a Greek State University in order to extract an (indispensable) conclusion, one must understand the Greek language, must comprehend the content of the regulation and finally must combine information maybe from many disparate parts of the corpus. For example, if a candidate post-graduate student wanted to know if and how he can attend these courses he should consider all the articles of the IR to find the answer to this question. On the other hand, a computer program could not draw such a conclusion using natural language text. To solve problems of this nature one can use the technologies of the Semantic Web. This paper presents the development of a system that gives solution to these issues, based on Semantic Wed mechanisms, such as ontologies in OWL and rule in SWRL. 


Course Regulations Semantic Web Ontologies OWL Rules SWRL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    El Kharbili, M., Stolarski, P.: Business Information Systems Workshops. In: BIS International Workshops (2009)Google Scholar
  2. 2.
    Salceda, J.V., Aldewereld, H., Grossi, D., Dignum, F.: From human regulations to regulated software agents’ behaviour: Connecting the abstract declarative norms with the concrete operational implementation. Artificial Intelligence and Law 16(1), 73–87 (2008)CrossRefGoogle Scholar
  3. 3.
    Antoniou, G., Billington, D., Maher, M.J.: On the Analysis of Regulations using Defeasible Rules. In: Proc. 32nd Hawaii International Conference on System Sciences (HICSS 1999), vol. 6, p. 6033 (1999)Google Scholar
  4. 4.
    Feltovich, P.J., Bradshaw, J.M., Clancey, W.J., Johnson, M.: Toward an Ontology of Regulation: Socially-Based Support for Coordination in Human and Machine Joint Activity. In: O’Hare, G.M.P., Ricci, A., O’Grady, M.J., Dikenelli, O. (eds.) ESAW 2006. LNCS (LNAI), vol. 4457, pp. 175–192. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Herman, I.: W3C Semantic Web Activity, (retrieved May 25, 2011)
  6. 6.
    Koivunen, M.-R., Miller, E.: Semantic Web Layers, Semantic Web Kick-Off in Finland - Vision, Technologies, Research, and Applications, pp. 27–44 (2002)Google Scholar
  7. 7.
    McGuinness, D.L., van Harmelen, F.: Ontology Web Language (OWL),
  8. 8.
    Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Technical report, W3C Member Submission (2004),
  9. 9.
    Baader, F.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  10. 10.
    Hayes, P.: RDF Semantics (2004),
  11. 11.
    Antoniou, G., van Harmelen, F.: A Semantic Web Primer, 2nd edn. MIT Press, Cambridge (2008)Google Scholar
  12. 12.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American Magazine 284(5), 34–43 (2001)CrossRefGoogle Scholar
  13. 13.
    Patel-Schneider, P.F., Horrocks, I.: Position Paper: A Comparison of Two Modelling Paradigms in the Semantic Web. In: Proceedings of the International Conference on World Wide Web, pp. 3–12. ACM Press, New York (2006)CrossRefGoogle Scholar
  14. 14.
    Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and Logic Program-ming Live Together Happily Ever After? In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 501–514. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: Description Logic Reasoning with Large Numbers of Individuals. In: Proceedings of the Workshop on Description Logics, vol. 104, pp. 31–40. CEUR-WS (2004)Google Scholar
  16. 16.
    Haarslev, V., Moller, R.: An Empirical Evaluation of Optimization Strategies for ABox Reasoning in Expressive Description Logics. In: Proc. Int. Workshop on Description Logics, vol. 22. CEUR-WS (1999)Google Scholar
  17. 17.
    Horrocks, I., Sattler, U.: Decidability of SHIQ with Complex Role Inclusion Axioms. Artificial Intelligence 160(1), 79–104 (2004)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible SROIQ. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, pp. 57–67. AAAI Press, Menlo Park (2006)Google Scholar
  19. 19.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining Logic Programs with Description Logic. In: Proceedings of the International Conference on World Wide Web, pp. 48–57. ACM Press, New York (2003)Google Scholar
  20. 20.
    de Bruijn, J., Lara, R., Polleres, A., Fensel, D.: OWL DL vs. OWL Flight: Con-ceptual Modeling and Reasoning for the Semantic Web. In: Proceedings of the International Conference on World Wide Web, pp. 623–632. ACM Press, New York (2005)Google Scholar
  21. 21.
    Antoniou, G., Damasio, C.V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski, J., Pa-tel-Schneider, P.F.: Combining Rules and Ontologies. A Survey. In: Reasoning on the Web with Rules and Semantics, REWERSE Deliverables (2005)Google Scholar
  22. 22.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set Programming with Description Logics for the Semantic Web. In: Proc. of the Int. Conf. of Knowledge Representation and Reasoning, pp. 141–151. Morgan Kaufmann, San Francisco (2004)Google Scholar
  23. 23.
    Wang, K., Billington, D., Blee, J., Antoniou, G.: Combining Description Logic and Defeasible Logic for the Semantic Web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 170–181. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating Data-log and Description Logics. Intelligent and Cooperative Information Systems 10, 227–252 (1998)CrossRefGoogle Scholar
  25. 25.
    Levy, A.Y., Rousset, M.: Combining Horn Rules and Description Logics in CARIN. Artificial Intelligence 104(1-2), 165–209 (1998)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Rosati, R.: Semantic and Computational Advantages of the Safe Integration of On-tologies and Rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 50–64. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Mei, J., Lin, Z., Boley, H.: ALC: An Integration of Description Logic and General Rules. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.) RR 2007. LNCS, vol. 4524, pp. 163–177. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Hoekstra, R., Breuker, J., Di Bello, M., Boer, A.: The LKIF Core ontology of basic legal concepts. In: Proc. Workshop on Legal Ontologies and Artificial Intelligence Techniques (LOAIT 2007) (2007)Google Scholar
  29. 29.
    Noy, N.F., McGuinness, D.L.: Ontology Development 101: A Guide to Creating Your First Ontology. Stanford Knowledge Systems Laboratory Technical Re-port KSL-01-05 (March 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gerasimos Papadopoulos
    • 1
  • Nick Bassiliades
    • 1
  1. 1.Department of InformaticsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations