Skip to main content

Computational Randomness from Generalized Hardcore Sets

  • Conference paper
  • 580 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6914))

Abstract

The seminal hardcore lemma of Impagliazzo states that for any mildly-hard Boolean function f, there is a subset of input, called the hardcore set, on which the function is extremely hard, almost as hard as a random Boolean function. This implies that the output distribution of f given a random input looks like a distribution with some statistical randomness. Can we have something similar for hard functions with several output bits? Can we say that the output distribution of such a general function given a random input looks like a distribution containing several bits of randomness? If so, one can simply apply any statistical extractor to extract computational randomness from the output of f. However, the conventional wisdom tells us to apply extractors with some additional reconstruction property, instead of just any extractor. Does this mean that there is no analogous hardcore lemma for general functions?

We show that a general hard function does indeed have some kind of hardcore set, but it comes with the price of a security loss which is proportional to the number of output values. More precisely, consider a hard function f:{0, 1}n → [V] = {1,…,V} such that any circuit of size s can only compute f correctly on at most \(\frac{1}{L}(1-\gamma)\) fraction of inputs, for some L ∈ [1,V − 1] and γ ∈ (0,1). Then we show that for some I ⊆ [V] with |I| = L + 1, there exists a hardcore set H I  ⊆ f − 1(I) with density \(\gamma/{V \choose L+1}\) such that any circuit of some size s′ can only compute f correctly on at most \(\frac{1+\epsilon}{L+1}\) fraction of inputs in H I . Here, s′ is smaller than s by some poly(V,1/ε,log(1/γ)) factor, which results in a security loss of such a factor. We show that it is basically impossible to guarantee a much larger hardcore set or a much smaller security loss. Finally, we show how our hardcore lemma can be used for extracting computational randomness from general hard functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.: The non-stochastic multi-armed bandit problem. SIAM J. Comput. 32(1), 48–77 (2002)

    Article  MATH  Google Scholar 

  2. Barak, B., Hardt, M., Kale, S.: The Uniform Hardcore Lemma via Approximate Bregman Projectionss. In: SODA 2008, pp. 1193–1200 (2008)

    Google Scholar 

  3. Barak, B., Shaltiel, R., Wigderson, A.: Computational analogues of entropy. In: Proc. APPROX-RANDOM, pp. 200–215 (2003)

    Google Scholar 

  4. Cover, T., Thomas, J.: Elements of Information Theory. Wiley, Chichester (1991)

    Book  MATH  Google Scholar 

  5. Goldreich, O., Rubinfeld, R., Sudan, M.: Learning polynomials with queries: the highly noisy case. SIAM J. Disc. Math. 13(4), 535–570 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Healy, A., Vadhan, S., Viola, E.: Using nondeterminism to amplify hardness. SIAM J. Comput. 35(4), 903–931 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Holenstein, T.: Key agreement from weak bit agreement. In: STOC 2005, pp. 664–673 (2005)

    Google Scholar 

  8. Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional computational entropy, or toward separating pseudoentropy from compressibility. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Impagliazzo, R.: Hard-core distributions for somewhat hard problems. In: FOCS 1995, pp. 538–545 (1995)

    Google Scholar 

  10. Klivans, A., Servedio, R.A.: Boosting and hard-core sets. Machine Learning 51(3), 217–238 (2003)

    Article  MATH  Google Scholar 

  11. Lee, C.-J., Lu, C.-J., Tsai, S.-C.: Deterministic extractors for independent-symbol sources. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 84–95. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Lee, C.-J., Lu, C.-J., Tsai, S.-C.: Extracting computational entropy and learning noisy linear functions. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 338–347. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Lu, C.-J., Tsai, S.-C., Wu, H.-L.: On the complexity of hard-core set constructions. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 183–194. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput.Syst. Sci. 52(1), 43–52 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. O’Donnell, R.: Hardness amplification within NP. In: STOC, pp. 751–760 (2002)

    Google Scholar 

  16. Shaltiel, R.: Recent developments in explicit constructions of extractors. Bulletin of the EATCS 77, 67–95 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR lemma. J. Comput.Syst. Sci. 62(2), 236–266 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Trevisan, L.: List decoding using the XOR lemma. In: FOCS, pp. 126–135 (2003)

    Google Scholar 

  19. Trevisan, L.: On uniform amplification of hardness in NP. In: STOC, pp. 31–38 (2005)

    Google Scholar 

  20. Yao, A.: Theory and applications of trapdoor functions. In: FOCS 1982, pp. 80–91 (1982)

    Google Scholar 

  21. Zuckerman, D.: General weak random sources. In: FOCS, pp. 534–543 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, CJ., Lu, CJ., Tsai, SC. (2011). Computational Randomness from Generalized Hardcore Sets. In: Owe, O., Steffen, M., Telle, J.A. (eds) Fundamentals of Computation Theory. FCT 2011. Lecture Notes in Computer Science, vol 6914. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22953-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22953-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22952-7

  • Online ISBN: 978-3-642-22953-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics