Abstract
The category Rel(Set) of sets and relations can be described as a category of spans and as the Kleisli category for the powerset monad. A set-functor can be lifted to a functor on Rel(Set) iff it preserves weak pullbacks. We show that these results extend to the enriched setting, if we replace sets by posets or preorders. Preservation of weak pullbacks becomes preservation of exact lax squares. As an application we present Moss’s coalgebraic over posets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adámek, J., El Bashir, R., Sobral, M., Velebil, J.: On functors that are lax epimorphisms. Theory Appl. Categ. 8.20, 509–521 (2001)
Balan, A., Kurz, A.: Finitary Functors: from Set to Preord and Poset. In: Corradini, A., Klin, B., Crstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 85–99. Springer, Heidelberg (2011)
Baltag, A.: A logic for coalgebraic simulation. Electron. Notes Theor. Comput. Sci. 33, 41–60 (2000)
Barr, M.: Relational algebras. In: Reports of the Midwest Category Seminar IV. Lecture Notes in Mathematics, vol. 137, pp. 39–55. Springer, Heidelberg (1970)
El Bashir, R., Velebil, J.: Reflective and coreflective subcategories of presheaves. Theory Appl. Categ. 10.16, 410–423 (2002)
Carboni, A., Kelly, G.M., Wood, R.J.: A 2-categorical approach to change of base and geometric morphisms I. Cahiers de Top. et Géom. Diff. XXXII.1, 47–95 (1991)
Guitart, R.: Relations et carrés exacts. Ann. Sci. Math. Québec IV.2, 103–125 (1980)
Hermida, C.: A categorical outlook on relational modalities and simulations, preprint, http://maggie.cs.queensu.ca/chermida/papers/sat-sim-IandC.pdf
Hermida, C., Jacobs, B.: Structural induction and coinduction in the fibrational setting. Inform. and Comput. 145, 107–152 (1998)
Hughes, J., Jacobs, B.: Simulations in coalgebra. Theor. Comput. Sci. 327, 71–108 (2004)
Kapulkin, K., Kurz, A., Velebil, J.: Expressivity of Coalgebraic Logic over Posets. In: CMCS 2010 Short contributions, CWI Technical report SEN-1004, pp. 16–17 (2010)
Kelly, G.M.: Basic concepts of enriched category theory. London Math. Soc. Lecture Notes Series, vol. 64. Cambridge Univ. Press, New York (1982)
Klin, B.: An Abstract Coalgebraic Approach to Process Equivalence for Well-Behaved Operational Semantics. University of Aarhus (2004)
Kupke, C., Kurz, A., Venema, Y.: Completeness of the finitary Moss logic. In: Advances in Modal Logic, pp. 193–217. College Publications (2008)
Kurz, A., Leal, R.: Equational coalgebraic logic. Electron. Notes Theor. Comput. Sci. 249, 333–356 (2009)
Levy, P.B.: Similarity quotients as final coalgebras. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 27–41. Springer, Heidelberg (2011)
Marmolejo, F.: Doctrines whose structure forms a fully faithful adjoint string. Theor. Appl. Categ. 3(2), 24–44 (1997)
Marmolejo, F.: Distributive laws for pseudomonads. Theor. Appl. Categ. 5(5), 91–147 (1999)
Marmolejo, F., Rosebrugh, R., Wood, R.J.: Duality for CCD lattices. Theor. Appl. Categ. 22(1), 1–23 (2009)
Moss, L.: Coalgebraic logic. Ann. Pure Appl. Logic 96, 277–317 (1999)
Rutten, J.: Relators and Metric Bisimulations (Extended Abstract). Electr. Notes Theor. Comput. Sci. 11, 252–258 (1998)
Street, R.: The formal theory of monads. J. Pure Appl. Algebra 2, 149–168 (1972)
Street, R.: Fibrations and Yoneda’s lemma in a 2-category. In: Category Seminar, Sydney 1974. Lecture Notes in Mathematics, vol. 420, pp. 104–133 (1974)
Street, R.: Elementary cosmoi I. In: Category Seminar, Sydney 1974. Lecture Notes in Mathematics, vol. 420, pp. 134–180. Springer, Heidelberg (1974)
Street, R.: Fibrations in bicategories. Cahiers de Top. et Géom. Diff. XXI.2, 111–159 (1980)
Venema, Y.: Automata and fixed point logic: a coalgebraic perspective. Inform. and Comput. 204.4, 637–678 (2006)
Worrell, J.: Coinduction for recursive data types: partial orders, metric spaces and Ω-categories. Electron. Notes Theor. Comput. Sci. 33, 337–356 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bílková, M., Kurz, A., Petrişan, D., Velebil, J. (2011). Relation Liftings on Preorders and Posets. In: Corradini, A., Klin, B., Cîrstea, C. (eds) Algebra and Coalgebra in Computer Science. CALCO 2011. Lecture Notes in Computer Science, vol 6859. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22944-2_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-22944-2_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22943-5
Online ISBN: 978-3-642-22944-2
eBook Packages: Computer ScienceComputer Science (R0)