Finitary Functors: From Set to Preord and Poset

  • Adriana Balan
  • Alexander Kurz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6859)

Abstract

We investigate how finitary functors on Set can be extended or lifted to finitary functors on Preord and Poset and discuss applications to coalgebra.

Keywords

extension lifting relator simulation (final) coalgebra exact square embedding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S., Jung, A.: Domain Theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 3, pp. 1–168. Oxford Univ. Press, New York (1994)Google Scholar
  2. 2.
    Aczel, P., Mendler, N.: A Final Coalgebra Theorem. In: Dybjer, P., Pitts, A.M., Pitt, D.H., Poigné, A., Rydeheard, D.E. (eds.) Category Theory and Computer Science. LNCS, vol. 389, pp. 357–365. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  3. 3.
    Adámek, J.: Final Coalgebras Are Ideal Completions of Initial Algebras. J. Logic Computat. 12(2), 217–242 (2002)MATHCrossRefGoogle Scholar
  4. 4.
    Adámek, J., Trnková, V.: Automata and Algebras in Categories. Mathematics and Its Applications: East European Series, vol. 37. Kluwer Academic Publishers, Dordrecht (1990)MATHGoogle Scholar
  5. 5.
    Bilková, M., Kurz, A., Petrişan, D., Velebil, J.: Relation Liftings on Preorders and Posets. In: Corradini, A., Klin, B., Crstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 115–129. Springer, Heidelberg (2011)Google Scholar
  6. 6.
    Borceux, F.: Handbook of Categorical Algebra. In: Encycl. Mathem. Appl., vol. 50-52. Cambridge Univ. Press, Cambridge (1994)Google Scholar
  7. 7.
    Guitart, R.: Relations et Carrés Exacts. Ann. Sci. Math. Québec 4(2), 103–125 (1980)MathSciNetMATHGoogle Scholar
  8. 8.
    Hughes, J., Jacobs, B.: Simulations in Coalgebra. Theor. Comput. Sci. 327, 71–108 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Kapulkin, K., Kurz, A., Velebil, J.: Expressivity of Coalgebraic Logic over Posets. In: Jacobs, B.P.F., Niqui, M., Rutten, J.J.M.M., Silva, A.M. (eds.) CMCS 2010 Short contributions, CWI Technical report SEN-1004, pp. 16–17 (2010)Google Scholar
  10. 10.
    Karazeris, P., Matzaris, A., Velebil, J.: Final Coalgebra in Accessible Categories, http://xxx.lanl.gov/abs/0905.4883
  11. 11.
    Lambek, J.: Subequalizers. Canad. Math. Bull. 13, 337–349 (1970)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Levy, P.: Similarity Quotients as Final Coalgebras. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 27–41. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Rutten, J.: Relators and Metric Bisimulations (Extended Abstract). In: Jacobs, B., Moss, L., Reichel, H., Rutten, J. (eds.) First Workshop on Coalgebraic Methods in Computer Science, CMCS 1998. Electr. Notes Theor. Comput. Sci., vol. 11, pp. 252–258 (1998)Google Scholar
  14. 14.
    Rutten, J.: Universal Coalgebra: A Theory of Systems. Theor. Comput. Sci. 249, 3–80 (2000)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Thijs, A.: Simulation and Fixed Point Sematics, Ph. D. Thesis, University of Groningen (1996)Google Scholar
  16. 16.
    Velebil, J., Kurz, A.: Equational Presentations of Functors and Monads. Math. Struct. Comput. Sci. 21(2), 363–381 (2011)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Worrell, J.: Coinduction for Recursive Data Types: Partial orders, Metric Spaces and Ω-Categories. In: Reichel, H. (ed.) Coalgebraic Methods in Computer Science, CMCS 2000. Electr. Notes Theor. Comput. Sci., vol. 33, pp. 337–356 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Adriana Balan
    • 1
  • Alexander Kurz
    • 2
  1. 1.University Politehnica of BucharestRomania
  2. 2.University of LeicesterUK

Personalised recommendations