Online Computation of Fastest Path in Time-Dependent Spatial Networks

  • Ugur Demiryurek
  • Farnoush Banaei-Kashani
  • Cyrus Shahabi
  • Anand Ranganathan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6849)


The problem of point-to-point fastest path computation in static spatial networks is extensively studied with many precomputation techniques proposed to speed-up the computation. Most of the existing approaches make the simplifying assumption that travel-times of the network edges are constant. However, with real-world spatial networks the edge travel-times are time-dependent, where the arrival-time to an edge determines the actual travel-time on the edge. In this paper, we study the online computation of fastest path in time-dependent spatial networks and present a technique which speeds-up the path computation. We show that our fastest path computation based on a bidirectional time-dependent A* search significantly improves the computation time and storage complexity. With extensive experiments using real data-sets (including a variety of large spatial networks with real traffic data) we demonstrate the efficacy of our proposed techniques for online fastest path computation.


Road Network Heuristic Function Spatial Network Forward Search Border Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Batz, G.V., Delling, D., Sanders, P., Vetter, C.: Time-dependent contraction hierarchies. In: ALENEX (2009)Google Scholar
  2. 2.
    Cooke, L., Halsey, E.: The shortest route through a network with timedependent internodal transit times. Journal of Mathematical Analysis and Applications (1966)Google Scholar
  3. 3.
    Dean, B.C.: Algorithms for min-cost paths in time-dependent networks with wait policies. Networks (2004)Google Scholar
  4. 4.
    Dehne, F., Omran, M.T., Sack, J.-R.: Shortest paths in time-dependent fifo networks using edge load forecasts. In: IWCTS (2009)Google Scholar
  5. 5.
    Delling, D.: Time-dependent SHARC-routing. In: Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193, pp. 332–343. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Demiryurek, U., Kashani, F.B., Shahabi, C.: A case for time-dependent shortest path computation in spatial networks. In: ACM SIGSPATIAL (2010)Google Scholar
  8. 8.
    Demiryurek, U., Pan, B., Kashani, F.B., Shahabi, C.: Towards modeling the traffic data on road networks. In: SIGSPATIAL-IWCTS (2009)Google Scholar
  9. 9.
    Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large graphs. In: EDBT (2008)Google Scholar
  10. 10.
    Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Operations Research 17(3) (1969)Google Scholar
  11. 11.
    Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent shortest paths. In: SODA (2011)Google Scholar
  12. 12.
    George, B., Kim, S., Shekhar, S.: Spatio-temporal network databases and routing algorithms: A summary of results. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 460–477. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Goldberg, A.V., Harellson, C.: Computing the shortest path: A* search meets graph theory. In: SODA (2005)Google Scholar
  14. 14.
    Gonzalez, H., Han, J., Li, X., Myslinska, M., Sondag, J.P.: Adaptive fastest path computation on a road network: A traffic mining approach. In: VLDB (2007)Google Scholar
  15. 15.
    Guc, B., Ranganathan, A.: Real-time, scalable route planning using stream-processing infrastructure. In: ITS (2010)Google Scholar
  16. 16.
    Halpern, J.: Shortest route with time dependent length of edges and limited delay possibilities in nodes. Mathematical Methods of Operations Research (1969)Google Scholar
  17. 17.
    Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics (1968)Google Scholar
  18. 18.
    Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network with speed patterns. In: ICDE (2006)Google Scholar
  19. 19.
    Kohler, E., Langkau, K., Skutella, M.: Time-expanded graphs for flow-dependent transit times. In: Proc. 10th Annual European Symposium on Algorithms (2002)Google Scholar
  20. 20.
    Kolahdouzan, M., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial network databases. In: VLDB (2004)Google Scholar
  21. 21.
    Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional a* search for time-dependent fast paths. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 334–346. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    NAVTEQ, (accessed in May 2010)
  23. 23.
    Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length. J. ACM (1990)Google Scholar
  24. 24.
    PeMS, (accessed in May 2010)
  25. 25.
    Pohl, I.: Bi-directional search. In: Machine Intelligence. Edinburgh University Press, Edinburgh (1971)Google Scholar
  26. 26.
    Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in large networks. In: CIKM (2009)Google Scholar
  27. 27.
    Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial databases. In: SIGMOD (2008)Google Scholar
  28. 28.
    Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 23–36. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    TELEATLAS, (accessed in May 2010)
  31. 31.
    Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest paths in large sparse graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 776–787. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ugur Demiryurek
    • 1
  • Farnoush Banaei-Kashani
    • 1
  • Cyrus Shahabi
    • 1
  • Anand Ranganathan
    • 2
  1. 1.Department of Computer ScienceUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.IBM T.J. Watson Research CenterHawthorneUSA

Personalised recommendations