Region of Interest Queries in CT Scans

  • Alexander Cavallaro
  • Franz Graf
  • Hans-Peter Kriegel
  • Matthias Schubert
  • Marisa Thoma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6849)

Abstract

Medical image repositories contain very large amounts of computer tomography (CT) scans. When querying a particular CT scan, the user is often not interested in the complete scan but in a certain region of interest (ROI). Unfortunately, specifying the ROI in terms of scan coordinates is usually not an option because an ROI is usually specified w.r.t. the scan content, e.g. an example region in another scan. Thus, the system usually retrieves the complete scan and the user has to navigate to the ROI manually. In addition to the time to navigate, there is a large overhead for loading and transferring the irrelevant parts of the scan.

In this paper, we propose a method for answering ROI queries which are specified by an example ROI in another scan. An important feature of our new approach is that it is not necessary to annotate the query or the result scan before query processing. Since our method is based on image similarity, it is very flexible w.r.t. the size and the position of the scanned region. To answer ROI queries, our new method employs instance-based regression in combination with interpolation techniques for mapping the slices of a scan to a height model of the human body. Furthermore, we propose an efficient search algorithm on the result scan for retrieving the ROI with high accuracy. In the experimental evaluation, we examine the prediction accuracy and the saved I/O costs of our new method on a repository of 2 526 CT scans.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning distance functions using equivalence relations. In: Proceedings of the 20th International Conference on Machine Learning (ICML), Washington, DC, pp. 11–18 (2003)Google Scholar
  2. 2.
    Baumann, P., Furtado, P., Ritsch, R., Widmann, N.: The RasDaMan approach to multidimensional database management. In: Proceedings of the 12th ACM Symposium on Applied Computing (ACM SAC), San Jose, CA, pp. 166–173. ACM, New York (1997)Google Scholar
  3. 3.
    Berchtold, S., Keim, D.A., Kriegel, H.P.: The X-Tree: An index structure for high-dimensional data. In: Proceedings of the 22nd International Conference on Very Large Data Bases (VLDB), Bombay, India (1996)Google Scholar
  4. 4.
    Emrich, T., Graf, F., Kriegel, H.P., Schubert, M., Thoma, M., Cavallaro, A.: CT slice localization via instance-based regression. In: Proceedings of the SPIE Medical Imaging 2010: Image Processing (SPIE), San Diego, CA, USA. p. 762320 (2010)Google Scholar
  5. 5.
    Evans, A.C., Collins, D.L., Mills, S.R., Brownand, E.D., Kelly, R.L., Peters, T.M.: 3D statistical neuroanatomical models from 305 MRI volumes. In: IEEE Nuclear Science Symposium and Medical Imaging Conference (1993)Google Scholar
  6. 6.
    Feulner, J., Zhou, S.K., Seifert, S., Cavallaro, A., Hornegger, J., Comaniciu, D.: Estimating the body portion of CT volumes by matching histograms of visual words. In: Proceedings of the SPIE Medical Imaging 2009 Conference (SPIE), Lake Buena Vista, FL, USA, vol. 7259, p. 72591V (2009)Google Scholar
  7. 7.
    Haas, B., Coradi, T., Scholz, M., Kunz, P., Huber, M., Oppitz, U., André, L., Lengkeek, V., Huyskens, D., van Esch, A., Reddick, R.: Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies. Physics in Medicine and Biology 53(6), 1751–1771 (2008)CrossRefGoogle Scholar
  8. 8.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explorations 11(1), 10–18 (2009)CrossRefGoogle Scholar
  9. 9.
    Holland, P., Welsch, R.: Robust regression using iteratively reweighted least-squares. Communications in Statistics-Theory and Methods 6(9), 813–827 (1977)CrossRefMATHGoogle Scholar
  10. 10.
    Kriegel, H.P., Seeger, B., Schneider, R., Beckmann, N.: The R*-tree: An efficient access method for geographic information systems. In: Proceedings of the International Conference on Geographic Information Systems, Ottawa, Canada (1990)Google Scholar
  11. 11.
    Nguyen, T.: Robust estimation, regression and ranking with applications in portfolio optimization. Ph.D. thesis, Massachusetts Institute of Technology (2009)Google Scholar
  12. 12.
    Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, San Francisco (2006)MATHGoogle Scholar
  13. 13.
    Seifert, S., Barbu, A., Zhou, S.K., Liu, D., Feulner, J., Huber, M., Suehling, M., Cavallaro, A., Comaniciu, D.: Hierarchical parsing and semantic navigation of full body CT data. In: Proceedings of the SPIE Medical Imaging 2009 Conference (SPIE), Lake Buena Vista, FL, USA. vol. 7259, p. 725902 (2009)Google Scholar
  14. 14.
    Seifert, S., Kelm, M., Möller, M., Mukherjee, S., Cavallaro, A., Huber, M., Comaniciu, D.: Semantic annotation of medical images. In: Proceedings of the SPIE Medical Imaging 2010: Image Processing (SPIE), San Diego, CA, USA. vol. 7628, p. 762808 (2010)Google Scholar
  15. 15.
    Talairach, J., Tournoux, P.: Co-Planar Stereotaxic Atlas of the Human Brain 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Thieme Medical Publishers (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexander Cavallaro
    • 2
  • Franz Graf
    • 1
  • Hans-Peter Kriegel
    • 1
  • Matthias Schubert
    • 1
  • Marisa Thoma
    • 1
  1. 1.Institute for InformaticsLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Imaging Science InstituteUniversity Hospital ErlangenErlangenGermany

Personalised recommendations