An Ontology-Based Traffic Accident Risk Mapping Framework

  • Jing Wang
  • Xin Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6849)


Road traffic accidents are a social and public challenge. Various spatial concentration detection methods have been proposed to discover the concentration patterns of traffic accidents. However, current methods treat each traffic accident location as a point without consideration of the severity level, and the final traffic accident risk map for the whole study area ignores the users’ requirements. In this paper, we propose an ontology-based traffic accident risk mapping framework. In the framework, the ontology represents the domain knowledge related to the traffic accidents and supports the data retrieval based on users’ requirements. A new spatial clustering method that takes into account the numbers and severity levels of accidents is proposed for risk mapping. To demonstrate the framework, a system prototype has been implemented. A case study in the city of Calgary is also discussed.


Spatial clustering GIS Ontology Traffic accident Road safety 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, T.K.: Kernel density estimation and K-means clustering to profile road accident hotspots. Accident Analysis & Prevention 41(3), 359–364 (2009)CrossRefGoogle Scholar
  2. 2.
    Black, W.R., Thomas, I.: Accidents on Belgiums motorways: a network autocorrelation analysis. Journal of Transport Geography 6 (March 23-31, 1998)Google Scholar
  3. 3.
    Borruso, G.: Network density estimation: analysis of point patterns over a network. In: Osvaldo, G., Marina, L.G., Vipin, K., Antonio, L., Heow, P.L., Youngsong, M., David, T., Chih Jeng, K.T. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 126–132. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Boots, B.N., Getis, A.: Point Pattern Analysis, Sage Newbury Park, CA (1988)Google Scholar
  5. 5.
  6. 6.
    Doherty, S.T., Andrey, J.C., MacGregor, C.: The situational risks of young drivers: The influence of passengers, time of day and day of week on accident rates. Accident Analysis & Prevention 30(1), 45–52 (1998)CrossRefGoogle Scholar
  7. 7.
    Egenhofer, M.J., Franzosa, R.D.: Point-set topological spatial relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)CrossRefGoogle Scholar
  8. 8.
    Ester, M., Kriegel, H., Sander, J., Xu, X.: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proc. Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press, Portland (1996)Google Scholar
  9. 9.
    Flahaut, B., Mouchart, M., Martin, E.S., Thomas, I.: The local spatial autocorrelation and the kernel method for identifying black zones a comparative approach. Accident Analysis & Prevention 35, 991–1004 (2003)CrossRefGoogle Scholar
  10. 10.
    Getis, A.: A history of the concept of spatial autocorrelation: a geographer’s perspective. Geographical Analysis 40, 297–309 (2008)CrossRefGoogle Scholar
  11. 11.
    Gruber, T.R.: A translation approach to portable ontologies. Knowledge Acquisition 5(2), 199–220 (1993)CrossRefGoogle Scholar
  12. 12.
    Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological engineering: with examples from the areas of knowledge management, e-commerce and the Semantic Web. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Han, J., Kamber, M., Tung, A.K.H.: Spatial Clustering Methods in Data Mining: A Survey. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery. Taylor and Francis, London (2001)Google Scholar
  14. 14.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006)zbMATHGoogle Scholar
  15. 15.
    Hwang, J.: Ontology-based spatial clustering method: case study of traffic accidents. Student Paper Sessions, UCGIS Summer Assembly (2003)Google Scholar
  16. 16.
    Hwang, S.: Using Formal Ontology for Integrated Spatial Data Mining. In: Computational Science and Its Applications – ICCSA 2004, pp. 1026–1035 (2004)Google Scholar
  17. 17.
    Maedche, A., Zacharias, V.: Clustering ontology-based metadata in the semantic web. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 348–360. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Okabe, A., Yamada, I.: The K-function method on a network and its computational implementation. Geographical Analysis 33(3), 271–290 (2001)CrossRefGoogle Scholar
  19. 19.
    Okabe, A., Satoh, T., Sugihara, K.: A kernel density estimation method for networks, its computational method and a GIS-based tool. International Journal of Geographical Information Science 23(1), 7–32 (2009)CrossRefGoogle Scholar
  20. 20.
    Peden, M., Scurfield, R., Sleet, D., Mohan, D., Hyder, A.A., Jarawan, E., Mathers, C. (eds.): World Report on Road Traffic Injury Prevention. World Health Organization, Geneva (2004)Google Scholar
  21. 21.
    Peuquet, D.J.: Representations of Space and Time. Guilford, New York (2002)Google Scholar
  22. 22.
    PIARC, Road Safety Manual, World Roads Association Cedex (2003)Google Scholar
  23. 23.
  24. 24. (2009),
  25. 25.
    Rifaat, S.M., Tay, R.: Effect of Street Pattern on Road Safety: Are Policy Recommendations Sensitive to Different Aggregations of Crashes by Severity? Transportation Research Record: Journal of the Transportation Research Board, 58–65 (2010)Google Scholar
  26. 26.
    Shino, S.: Analysis of a distribution of point events using the network-based quadrat method. Geographical Analysis 40, 380–400 (2008)CrossRefGoogle Scholar
  27. 27.
    Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide. W3C (2004),
  28. 28.
    Steenberghen, T., Aerts, K., Thomas, I.: Spatial clustering of events on a network. Journal of Transport Geography 18, 411–418 (2010)CrossRefGoogle Scholar
  29. 29.
    Steenberghen, T., Dufays, T., Thomas, I., Flahaut, B.: Intra-urban location and clustering of road accidents using GIS: a Belgian example. International Journal of Geographical Information Science 18(2), 169–181 (2004)CrossRefGoogle Scholar
  30. 30.
    Stefanakis, E.: NET-DBSCAN: clustering the nodes of a dynamic linear network. International Journal of Geographical Information Science 21(4), 427–442 (2007)CrossRefGoogle Scholar
  31. 31.
    Wang, X., Gu, W., Ziébelin, D., Hamilton, H.: An Ontology-Based Framework for Geospatial Clustering. International Journal of Geographical Information Science 24(1), 1601–1630 (2010)CrossRefGoogle Scholar
  32. 32.
    Wang, X., Hamilton, H.J.: Towards An Ontology-Based Spatial Clustering Framework. In: Proceedings of the Eighteenth Canadian Artificial Intelligence Conference (AI 2005), Victoria, Canada, pp. 205–216 (2005)Google Scholar
  33. 33.
    Xie, Z., Yan, J.: Kernel density estimation of traffic accidents in a network space. Computers, Environment and Urban Systems 32, 396–406 (2008)CrossRefGoogle Scholar
  34. 34.
    Yamada, I., Thill, J.-C.: Comparison of planar and network K-functions in traffic accident analysis. Journal of Transport Geography 12, 149–158 (2004)CrossRefGoogle Scholar
  35. 35.
    Yue, D., Wang, S., Zhao, A.: Traffic Accidents Knowledge Management Based on Ontology. In: Proceedings of the 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, vol. 07, pp. 447–449. IEEE Computer Society, Los Alamitos (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jing Wang
    • 1
  • Xin Wang
    • 1
  1. 1.Department of Geomatics EngineeringUniversity of CalgaryCalgaryCanada

Personalised recommendations