Inverse Queries for Multidimensional Spaces

  • Thomas Bernecker
  • Tobias Emrich
  • Hans-Peter Kriegel
  • Nikos Mamoulis
  • Matthias Renz
  • Shiming Zhang
  • Andreas Züfle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6849)

Abstract

Traditional spatial queries return, for a given query object q, all database objects that satisfy a given predicate, such as epsilon range and k-nearest neighbors. This paper defines and studies inverse spatial queries, which, given a subset of database objects Q and a query predicate, return all objects which, if used as query objects with the predicate, contain Q in their result. We first show a straightforward solution for answering inverse spatial queries for any query predicate. Then, we propose a filter-and-refinement framework that can be used to improve efficiency. We show how to apply this framework on a variety of inverse queries, using appropriate space pruning strategies. In particular, we propose solutions for inverse epsilon range queries, inverse k-nearest neighbor queries, and inverse skyline queries. Our experiments show that our framework is significantly more efficient than naive approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: An efficient and robust access method for points and rectangles. In: Proc. SIGMOD (1990)Google Scholar
  2. 2.
    Bernecker, T., Emrich, T., Kriegel, H.-P., Mamoulis, N., Zhang, S., Renz, M., Züfle, A.: Inverse queries for multidimensional spaces. In: The ACM Computing Research Repository, CoRR (2011), http://arxiv.org/abs/1103.0172
  3. 3.
    Dellis, E., Seeger, B.: Efficient computation of reverse skyline queries. In: VLDB, pp. 291–302 (2007)Google Scholar
  4. 4.
    Emrich, T., Kriegel, H.-P., Kröger, P., Renz, M., Züfle, A.: Boosting spatial pruning: On optimal pruning of mbrs. In: SIGMOD (June 6-11, 2010)Google Scholar
  5. 5.
    Hjaltason, G.R., Samet, H.: Ranking in spatial databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor queries. In: Proc. SIGMOD (2000)Google Scholar
  7. 7.
    Lian, X., Chen, L.: Monochromatic and bichromatic reverse skyline search over uncertain databases. In: SIGMOD Conference, pp. 213–226 (2008)Google Scholar
  8. 8.
    Papadias, D., Shen, Q., Tao, Y., Mouratidis, K.: Group nearest neighbor queries. In: Proceedings of the 20th International Conference on Data Engineering, ICDE 2004, Boston, MA, USA, March 30 -April 2, pp. 301–312 (2004)Google Scholar
  9. 9.
    Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases. ACM Trans. Database Syst. 30(2), 529–576 (2005)CrossRefGoogle Scholar
  10. 10.
    Singh, A., Ferhatosmanoglu, H., Tosun, A.S.: High dimensional reverse nearest neighbor queries. In: Proc. CIKM (2003)Google Scholar
  11. 11.
    Stanoi, I., Agrawal, D., Abbadi, A.E.: Reverse nearest neighbor queries for dynamic databases. In: Proc. DMKD (2000)Google Scholar
  12. 12.
    Tao, Y., Papadias, D., Lian, X.: Reverse kNN search in arbitrary dimensionality. In: Proc. VLDB (2004)Google Scholar
  13. 13.
    Vlachou, A., Doulkeridis, C., Kotidis, Y., Nørvåg, K.: Reverse top-k queries. In: ICDE, pp. 365–376 (2010)Google Scholar
  14. 14.
    Yang, C., Lin, K.-I.: An index structure for efficient reverse nearest neighbor queries. In: Proc. ICDE (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thomas Bernecker
    • 1
  • Tobias Emrich
    • 1
  • Hans-Peter Kriegel
    • 1
  • Nikos Mamoulis
    • 2
  • Matthias Renz
    • 1
  • Shiming Zhang
    • 2
  • Andreas Züfle
    • 1
  1. 1.Institute for InformaticsLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Department of Computer ScienceUniversity of Hong KongHong Kong

Personalised recommendations