Geodetic Point-In-Polygon Query Processing in Oracle Spatial

  • Ying Hu
  • Siva Ravada
  • Richard Anderson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6849)

Abstract

As Global Positioning Systems (GPSs) are increasingly ubiquitous, spatial database systems are also encountering increasing use of location or point data, which is often expressed in geodetic coordinates: longitude and latitude. A simple but very important question regarding this data is whether the locations lie within a given region. This is normally called the point-in-polygon (PIP) problem. Within the Geodetic space, PIP queries have additional challenges that are not present in the Cartesian space. In this paper, we discuss several techniques implemented in Oracle Spatial to speed up geodetic PIP query processing. Our experiments utilizing real-world data sets demonstrate the PIP query performance can be significantly improved using these new techniques.

Keywords

Point-In-Polygon Geodetic Data Spatial Databases R-tree 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Badawy, W.M., Aref, W.G.: On Local Heuristics to Speed Up Polygon-Polygon Intersection Tests. In: ACM-GIS 1999, pp. 97–102 (1999)Google Scholar
  2. 2.
    Brinkhoff, T., Horn, H., Kriegel, H.-P., Schneider, R.: A Storage and Access Architecture for Efficient Query Processing in Spatial Database Systems. In: Abel, D.J., Ooi, B.-C. (eds.) SSD 1993. LNCS, vol. 692, pp. 357–376. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  3. 3.
    IBM Informix, IBM Informix Geodetic DataBlade Module User’s Guide Version 3.12 (2007) Google Scholar
  4. 4.
    Fang, Y., Friedman, M., Nair, G., Rys, M., Schmid, A.-E.: Spatial indexing in Microsoft SQL server 2008. In: SIGMOD Conference 2008, pp. 1207–1216 (2008)Google Scholar
  5. 5.
    Kothuri, R.K., Ravada, S.: Efficient Processing of Large Spatial Queries Using Interior Approximations. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 404–424. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Kothuri, R.K., Ravada, S., Abugov, D.: Quadtree and R-tree Indexes in Oracle Spatial: A Comparison Using GIS Data. In: SIGMOD Conference 2002, pp. 546–557 (2002)Google Scholar
  7. 7.
    Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W.: Geographic Information Systems and Science. John Wiley & Sons Ltd, West Sussex (2005)Google Scholar
  8. 8.
    Microsoft SQL Server, Spatial Indexing Overview, http://technet.microsoft.com/en-us/library/bb964712.aspx
  9. 9.
    Oracle Spatial, Oracle® Spatial Developer’s Guide 11g Release 2 (11.2), Part Number E11830-07 (2010) Google Scholar
  10. 10.
    O’Rourke, J.: Computational Geometry in C. Cambridge University Press, Cambridge (1998)CrossRefMATHGoogle Scholar
  11. 11.
    Papadias, D., Theodoridis, Y., Sellis, T.K., Egenhofer, M.J.: Topological Relations in the World of Minimum Bounding Rectangles: A Study with R-trees. In: SIGMOD Conference 1995, pp. 92–103 (1995)Google Scholar
  12. 12.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ying Hu
  • Siva Ravada
  • Richard Anderson

There are no affiliations available

Personalised recommendations