Efficient Processing of Top-k Spatial Keyword Queries

  • João B. Rocha-Junior
  • Orestis Gkorgkas
  • Simon Jonassen
  • Kjetil Nørvåg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6849)


Given a spatial location and a set of keywords, a top-k spatial keyword query returns the k best spatio-textual objects ranked according to their proximity to the query location and relevance to the query keywords. There are many applications handling huge amounts of geotagged data, such as Twitter and Flickr, that can benefit from this query. Unfortunately, the state-of-the-art approaches require non-negligible processing cost that incurs in long response time. In this paper, we propose a novel index to improve the performance of top-k spatial keyword queries named Spatial Inverted Index (S2I). Our index maps each distinct term to a set of objects containing the term. The objects are stored differently according to the document frequency of the term and can be retrieved efficiently in decreasing order of keyword relevance and spatial proximity. Moreover, we present algorithms that exploit S2I to process top-k spatial keyword queries efficiently. Finally, we show through extensive experiments that our approach outperforms the state-of-the-art approaches in terms of update and query cost.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anh, V.N., de Kretser, O., Moffat, A.: Vector-space ranking with effective early termination. In: Proc. of ACM Special Interest Group on Information Retrieval (SIGIR), pp. 35–42 (2001)Google Scholar
  2. 2.
    Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The R*-tree: An efficient and robust access method for points and rectangles. In: Proceedings of the ACM Int. Conf. on Management of Data (SIGMOD), pp. 322–331 (1990)Google Scholar
  3. 3.
    Chen, Y., Suel, T., Markowetz, A.: Efficient query processing in geographic web search engines. In: Proceedings of the ACM Int. Conf. on Management of Data (SIGMOD), pp. 277–288 (2006)Google Scholar
  4. 4.
    Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. In: Int. Conf. on Very Large Data Bases (VLDB), pp. 337–348 (2009)Google Scholar
  5. 5.
    Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: Proceedings of Int. Conf. on Data Engineering (ICDE), pp. 656–665 (2008)Google Scholar
  6. 6.
    Güntzer, U., Balke, W., Kießling, W.: Optimizing Multi-Feature queries for image databases. In: Proceedings of the Int. Conf. on Very Large Data Bases (VLDB), pp. 419–428 (2000)Google Scholar
  7. 7.
    Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing spatial-keyword (SK) queries in geographic information retrieval (GIR) systems. In: Proceedings of the Int. Conf. on Scientific and Statistical Database Management (SSDBM), pp. 1–10 (2007)Google Scholar
  8. 8.
    Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Transactions on Database Systems (TODS) 24(2), 265–318 (1999)CrossRefGoogle Scholar
  9. 9.
    Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in relational database systems. ACM Comp. Surveys 40(4), 1–58 (2008)CrossRefGoogle Scholar
  10. 10.
    Joachims, T.: A statistical learning model of text classification for support vector machines. In: Proc. of ACM Special Interest Group on Information Retrieval (SIGIR), pp. 128–136 (2001)Google Scholar
  11. 11.
    Li, Z., Lee, K.C., Zheng, B., Lee, W.-C., Lee, D., Wang, X.: IR-tree: An efficient index for geographic document search. Proceedings of the IEEE Transactions on Knowledge and Data Engineering (TKDE) 99(4), 585–599 (2010)Google Scholar
  12. 12.
    Mamoulis, N., Yiu, M.L., Cheng, K.H., Cheung, D.W.: Efficient top-k aggregation of ranked inputs. ACM Transactions on Database Systems (TODS) 32(3), 19 (2007)CrossRefGoogle Scholar
  13. 13.
    Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial data warehouses. In: Proceedings of the Int. Symposium on Advances in Spatial and Temporal Databases (SSTD), pp. 443–459 (2001)Google Scholar
  15. 15.
    Rocha-Junior, J.B., Vlachou, A., Doulkeridis, C., Nørvåg, K.: Efficient processing of top-k spatial preference queries. Proceedings of the VLDB Endowment (PVLDB) 4(2), 93–104 (2010)CrossRefGoogle Scholar
  16. 16.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  17. 17.
    Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.: Hybrid index structures for location-based web search. In: Proceedings of Int. Conf. on Information and Knowledge Management (CIKM), pp. 155–162 (2005)Google Scholar
  18. 18.
    Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comp. Surveys 38(2), 1–56 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • João B. Rocha-Junior
    • 1
  • Orestis Gkorgkas
    • 1
  • Simon Jonassen
    • 1
  • Kjetil Nørvåg
    • 1
  1. 1.Department of Computer and Information ScienceNorwegian University of Science and Technology (NTNU)TrondheimNorway

Personalised recommendations