MIDAS: Multi-attribute Indexing for Distributed Architecture Systems

  • George Tsatsanifos
  • Dimitris Sacharidis
  • Timos Sellis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6849)

Abstract

This work presents a pure multidimensional, indexing infrastructure for large-scale decentralized networks that operate in extremely dynamic environments where peers join, leave and fail arbitrarily. We propose a new peer-to-peer variant implementing a virtual distributed k-d tree, and develop efficient algorithms for multidimensional point and range queries. Scalability is enhanced as each peer has only partial knowledge of the network. The most prominent feature of our method, is that in expectance each peer maintains O(logn) state and requests are resolved in O(logn) hops with respect to the overlay size n. In addition, we provide mechanisms for handling peer failures and improving fault tolerance as well as balancing the load of peers. Finally, our work is complemented by an experimental evaluation, where MIDAS is shown to outperform existing methods in spatial as well as in higher dimensional settings.

Keywords

Peer-to-peer systems kd-trees 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M., Punceva, M., Schmidt, R.: P-grid: a self-organizing structured p2p system. SIGMOD Record 32(3), 29–33 (2003)CrossRefGoogle Scholar
  2. 2.
    Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)CrossRefMATHGoogle Scholar
  3. 3.
    Bentley, J.L.: K-d trees for semidynamic point sets. In: Symposium on Computational Geometry, pp. 187–197 (1990)Google Scholar
  4. 4.
    Bharambe, A.R., Agrawal, M., Seshan, S.: Mercury: supporting scalable multi-attribute range queries. In: SIGCOMM, pp. 353–366 (2004)Google Scholar
  5. 5.
    Blanas, S., Samoladas, V.: Contention-based performance evaluation of multidimensional range search in p2p networks. In: InfoScale 2007, pp. 1–8 (2007)Google Scholar
  6. 6.
    Cai, M., Frank, M.R., Chen, J., Szekely, P.A.: Maan: A multi-attribute addressable network for grid information services. J. Grid Comp. 2(1), 3–14 (2004)CrossRefMATHGoogle Scholar
  7. 7.
    Datta, A., Hauswirth, M., John, R., Schmidt, R., Aberer, K.: Range queries in trie-structured overlays. In: P2P Computing, pp. 57–66 (2005)Google Scholar
  8. 8.
    Duch, A., Estivill-Castro, V., Martínez, C.: Randomized k-dimensional binary search trees. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 199–208. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Ganesan, P., Yang, B., Garcia-Molina, H.: One torus to rule them all: Multidimensional queries in p2p systems. In: WebDB, pp. 19–24 (2004)Google Scholar
  10. 10.
    Jagadish, H.V., Ooi, B.C., Vu, Q.H.: Baton: A balanced tree structure for peer-to-peer networks. In: VLDB, pp. 661–672 (2005)Google Scholar
  11. 11.
    Jagadish, H.V., Ooi, B.C., Vu, Q.H., Zhang, R., Zhou, A.: Vbi-tree: A peer-to-peer framework for supporting multi-dimensional indexing schemes. In: ICDE, p. 34 (2006)Google Scholar
  12. 12.
    Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., Lewin, D.: Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the world wide web. In: ACM Symp. on Theory of Comp., pp. 654–663 (1997)Google Scholar
  13. 13.
    Maymounkov, P., Mazières, D.: Kademlia: A peer-to-peer information system based on the xor metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated objects in a distributed environment. Theory Comput. Syst. 32(3), 241–280 (1999)CrossRefMATHGoogle Scholar
  15. 15.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable contentaddressable network. In: SIGCOMM 2001, pp. 161–172 (2001)Google Scholar
  16. 16.
    Reed, B.A.: The height of a random binary search tree. Journal of the ACM 50(3), 306–332 (2003)CrossRefMATHGoogle Scholar
  17. 17.
    Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Liu, H. (ed.) Middleware 2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Shu, Y., Ooi, B.C., Tan, K.-L., Zhou, A.: Supporting multi-dimensional range queries in peer-to-peer systems. In: Peer-to-Peer Computing, pp. 173–180 (2005)Google Scholar
  19. 19.
    Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrishnan, H.: Chord: a scalable p2p lookup protocol for internet applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)CrossRefGoogle Scholar
  20. 20.
    Zhao, B., Kubiatowicz, J., Joseph, A.D.: Tapestry: a resilient global-scale overlay for service deployment. IEEE Journal on Selected Areas in Comm. 22(1), 41–53 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • George Tsatsanifos
    • 1
  • Dimitris Sacharidis
    • 2
  • Timos Sellis
    • 1
    • 2
  1. 1.National Technical University of AthensGreece
  2. 2.Institute for the Management of Information Systems, R.C. “Athena”Greece

Personalised recommendations