Skip to main content

Morphogenesis in Paracoccidioides brasiliensis

  • Chapter
  • First Online:
Morphogenesis and Pathogenicity in Fungi

Part of the book series: Topics in Current Genetics ((TCG,volume 22))

  • 1583 Accesses

Abstract

Paracoccidioidomycosis (PCM) is a deep systemic mycosis originally described in 1908 caused by the ascomycete Paracoccidioides brasiliensis, a thermodimorphic fungal pathogen. The disease is autochthonous to Latin America and areas of higher incidence occur in countries such as Brazil, Argentina, Colombia, and Venezuela. Inside the mammalian host, PCM is characterized by a granulomatous inflammation that invades conjunctival tissue or viscera. P. brasiliensis grows as yeast in cultures incubated at 37°C or inside the host and in a filamentous saprophytic form at low temperatures (26°C) or in the environmental niches. The relative temperature-dependent simplistic mechanisms whereby P. brasiliensis orchestrates its developmental program for switching morphological forms have been under intense scrutiny for several decades, and although major advances have been achieved, much remains to be uncovered for the identification of new virulence determinants and therapeutical targets, and for the comprehension of the pathophysiology of this fungus. Although recent studies have begun to identify genes and overall pathways required for the thermodimorphic process and pathogenicity, master regulators mediating morphogenesis, virulence, and the mycelium-to-yeast transition are still not recognized. Transcriptional profiling studies have highlighted the importance of differential expression genes in the mycelial and yeast phases of P. brasiliensis and have analyzed putative genes involved in virulence and morphogenesis based on evidences from other dimorphic fungi or pathways involved in virulence traits. Here, we consider the current information obtained at the transcriptional level in P. brasiliensis as the basis for an update of the main pathways involved in the virulence and pathogenicity of this fungus, and the experimental possibilities generated by the newly released genomic sequences that will drive the forthcoming years of systematic research of P. brasiliensis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadio AK, Kioshima ES, Teixeira MM et al (2011) Comparative genomics allowed the identification of drug targets against human fungal pathogens. BMC Genomics 12:75

    PubMed  CAS  Google Scholar 

  • Almeida AJ, Martins M, Carmona JA et al (2006) New insights into the cell cycle profile of Paracoccidioides brasiliensis. Fungal Genet Biol 43:401–409

    PubMed  CAS  Google Scholar 

  • Almeida AJ, Carmona JA, Cunha C et al (2007) Towards a molecular genetic system for the pathogenic fungus Paracoccidioides brasiliensis. Fungal Genet Biol 44:1387–1398

    PubMed  CAS  Google Scholar 

  • Almeida AJ, Cunha C, Carmona JA et al (2009) Cdc42p controls yeast-cell shape and virulence of Paracoccidioides brasiliensis. Fungal Genet Biol 46:919–926

    PubMed  CAS  Google Scholar 

  • Alspaugh JA, Perfect JR, Heitman J (1997) Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev 11:3206–3217

    PubMed  CAS  Google Scholar 

  • Andrade RV, Da Silva SP, Torres FA et al (2005) Overview and perspectives the transcriptome of Paracoccidioides brasiliensis. Rev Iberoam Micol 22:203–212

    PubMed  Google Scholar 

  • Andrade RV, Paes HC, Nicola AM et al (2006) Cell organisation, sulphur metabolism and ion transport-related genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells. BMC Genomics 7:208

    PubMed  Google Scholar 

  • Aoki Y, Yamamoto M, Hosseini-Mazinani SM et al (1996) Antifungal azoxybacilin exhibits activity by inhibiting gene expression of sulfite reductase. Antimicrob Agents Chemother 40:127–132

    PubMed  CAS  Google Scholar 

  • Aquino-Pinero EE, Rodriguez del Valle N (1997) Different protein kinase C isoforms are present in the yeast and mycelium forms of Sporothrix schenckii. Mycopathologia 138:109–115

    PubMed  CAS  Google Scholar 

  • Arellano M, Coll PM, Perez P (1999a) RHO GTPases in the control of cell morphology, cell polarity, and actin localization in fission yeast. Microsc Res Tech 47:51–60

    PubMed  CAS  Google Scholar 

  • Arellano M, Valdivieso MH, Calonge TM et al (1999b) Schizosaccharomyces pombe protein kinase C homologues, pck1p and pck2p, are targets of rho1p and rho2p and differentially regulate cell integrity. J Cell Sci 112(Pt 20):3569–3578

    PubMed  CAS  Google Scholar 

  • Aristizabal BH, Clemons KV, Stevens DA, Restrepo A (1998) Morphological transition of Paracoccidioides brasiliensis conidia to yeast cells: in vivo inhibition in females. Infect Immun 66:5587–5591

    PubMed  CAS  Google Scholar 

  • Bagagli E, Theodoro RC, Bosco SM, McEwen JG (2008) Paracoccidioides brasiliensis: phylogenetic and ecological aspects. Mycopathologia 165:197–207

    PubMed  Google Scholar 

  • Bastos KP, Bailao AM, Borges CL et al (2007) The transcriptome analysis of early morphogenesis in Paracoccidioides brasiliensis mycelium reveals novel and induced genes potentially associated to the dimorphic process. BMC Microbiol 7:29

    PubMed  Google Scholar 

  • Berman J, Sudbery PE (2002) Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3:918–930

    PubMed  CAS  Google Scholar 

  • Bialek R, Ibricevic A, Fothergill A, Begerow D (2000) Small subunit ribosomal DNA sequence shows Paracoccidioides brasiliensis closely related to Blastomyces dermatitidis. J Clin Microbiol 38:3190–3193

    PubMed  CAS  Google Scholar 

  • Bicknell AA, Babour A, Federovitch CM, Niwa M (2007) A novel role in cytokinesis reveals a housekeeping function for the unfolded protein response. J Cell Biol 177:1017–1027

    PubMed  CAS  Google Scholar 

  • Boguslawski G, Stetler DA (1979) Aspects of physiology of Histoplasma capsulatum (a review). Mycopathologia 67:17–24

    PubMed  CAS  Google Scholar 

  • Borges-Walmsley MI, Chen D, Shu X, Walmsley AR (2002) The pathobiology of Paracoccidioides brasiliensis. Trends Microbiol 10:80–87

    PubMed  CAS  Google Scholar 

  • Boyce KJ, Hynes MJ, Andrianopoulos A (2001) The CDC42 homolog of the dimorphic fungus Penicillium marneffei is required for correct cell polarization during growth but not development. J Bacteriol 183:3447–3457

    PubMed  CAS  Google Scholar 

  • Brown AJ, Gow NA (1999) Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7:333–338

    PubMed  CAS  Google Scholar 

  • Brummer E, Castaneda E, Restrepo A (1993) Paracoccidioidomycosis: an update. Clin Microbiol Rev 6:89–117

    PubMed  CAS  Google Scholar 

  • Cabib E, Bowers B, Sburlati A, Silverman SJ (1988) Fungal cell wall synthesis: the construction of a biological structure. Microbiol Sci 5:370–375

    PubMed  CAS  Google Scholar 

  • Cairns T, Minuzzi F, Bignell E (2010) The host-infecting fungal transcriptome. FEMS Microbiol Lett 307:1–11

    PubMed  CAS  Google Scholar 

  • Calcagno AM, Nino-Vega G, San-Blas F, San-Blas G (1998) Geographic discrimination of Paracoccidioides brasiliensis strains by randomly amplified polymorphic DNA analysis. J Clin Microbiol 36:1733–1736

    PubMed  CAS  Google Scholar 

  • Calich VL, Kashino SS (1998) Cytokines produced by susceptible and resistant mice in the course of Paracoccidioides brasiliensis infection. Braz J Med Biol Res 31:615–623

    PubMed  CAS  Google Scholar 

  • Calonge TM, Nakano K, Arellano M et al (2000) Schizosaccharomyces pombe rho2p GTPase regulates cell wall alpha-glucan biosynthesis through the protein kinase pck2p. Mol Biol Cell 11:4393–4401

    PubMed  CAS  Google Scholar 

  • Campos CB, Di Benedette JP, Morais FV, Ovalle R, Nobrega MP (2008) Evidence for the role of calcineurin in morphogenesis and calcium homeostasis during mycelium-to-yeast dimorphism of Paracoccidioides brasiliensis. Eukaryot Cell 7:1856–1864

    PubMed  CAS  Google Scholar 

  • Cao C, Li R, Wan Z et al (2007) The effects of temperature, pH, and salinity on the growth and dimorphism of Penicillium marneffei. Med Mycol 45:401–407

    PubMed  CAS  Google Scholar 

  • Carratu L, Franceschelli S, Pardini CL et al (1996) Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast. Proc Natl Acad Sci USA 93:3870–3875

    PubMed  CAS  Google Scholar 

  • Carrero LL, Nino-Vega G, Teixeira MM et al (2008) New Paracoccidioides brasiliensis isolate reveals unexpected genomic variability in this human pathogen. Fungal Genet Biol 45:605–612

    PubMed  CAS  Google Scholar 

  • Carvalho KC, Ganiko L, Batista WL et al (2005) Virulence of Paracoccidioides brasiliensis and gp43 expression in isolates bearing known PbGP43 genotype. Microbes Infect 7:55–65

    PubMed  CAS  Google Scholar 

  • Chen DL, Janganan TK, Chen GY et al (2007) The cAMP pathway is important for controlling the morphological switch to the pathogenic yeast form of Paracoccidioides brasiliensis. Mol Microbiol 65:761–779

    PubMed  CAS  Google Scholar 

  • Clemons KV, Feldman D, Stevens DA (1989) Influence of oestradiol on protein expression and methionine utilization during morphogenesis of Paracoccidioides brasiliensis. J Gen Microbiol 135:1607–1617

    PubMed  CAS  Google Scholar 

  • Cock AM, Cano LE, Velez D et al (2000) Fibrotic sequelae in pulmonary paracoccidioidomycosis: histopathological aspects in BALB/c mice infected with viable and non-viable Paracoccidioides brasiliensis propagules. Rev Inst Med Trop Sao Paulo 42:59–66

    PubMed  CAS  Google Scholar 

  • Costa PF, Fernandes GF, dos Santos PO, Amaral CC, Camargo ZP (2010) Characteristics of environmental Paracoccidioides brasiliensis isolates. Mycopathologia 169:37–46

    PubMed  CAS  Google Scholar 

  • de Carvalho MJ, Amorim Jesuino RS, Daher BS et al (2003) Functional and genetic characterization of calmodulin from the dimorphic and pathogenic fungus Paracoccidioides brasiliensis. Fungal Genet Biol 39:204–210

    PubMed  Google Scholar 

  • Egeberg RO, Elconin AE, Egeberg MC (1964) Effect of salinity and temperature on Coccidioides immitis and three antagonistic soil saprophytes. J Bacteriol 88:473–476

    PubMed  CAS  Google Scholar 

  • Felipe MS, Andrade RV, Petrofeza SS et al (2003) Transcriptome characterization of the dimorphic and pathogenic fungus Paracoccidioides brasiliensis by EST analysis. Yeast 20:263–271

    PubMed  CAS  Google Scholar 

  • Felipe MS, Andrade RV, Arraes FB et al (2005) Transcriptional profiles of the human pathogenic fungus Paracoccidioides brasiliensis in mycelium and yeast cells. J Biol Chem 280:24706–24714

    PubMed  Google Scholar 

  • Fernandes L, Araujo MA, Amaral A et al (2005) Cell signaling pathways in Paracoccidioides brasiliensis-inferred from comparisons with other fungi. Genet Mol Res 4:216–231

    PubMed  CAS  Google Scholar 

  • Ferreira ME, Marques Edos R, Malavazi I et al (2006) Transcriptome analysis and molecular studies on sulfur metabolism in the human pathogenic fungus Paracoccidioides brasiliensis. Mol Genet Genomics 276:450–463

    PubMed  CAS  Google Scholar 

  • Franco M (1987) Host-parasite relationships in paracoccidioidomycosis. J Med Vet Mycol 25:5–18

    PubMed  CAS  Google Scholar 

  • Franco M, Sano A, Kera K et al (1989) Chlamydospore formation by Paracoccidioides brasiliensis mycelial form. Rev Inst Med Trop Sao Paulo 31:151–157

    PubMed  CAS  Google Scholar 

  • Franco M, Bagagli E, Scapolio S, da Silva LC (2000) A critical analysis of isolation of Paracoccidioides brasiliensis from soil. Med Mycol 38:185–191

    PubMed  CAS  Google Scholar 

  • Fuchs BB, Mylonakis E (2009) Our paths might cross: the role of the fungal cell wall integrity pathway in stress response and cross talk with other stress response pathways. Eukaryot Cell 8:1616–1625

    PubMed  CAS  Google Scholar 

  • Galagan JE, Henn MR, Ma LJ, Cuomo CA, Birren B (2005) Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res 15:1620–1631

    PubMed  CAS  Google Scholar 

  • Garcia AM, Hernandez O, Aristizabal BH et al (2010) Gene expression analysis of Paracoccidioides brasiliensis transition from conidium to yeast cell. Med Mycol 48:147–154

    PubMed  CAS  Google Scholar 

  • Gasch AP (2007) Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 24:961–976

    PubMed  CAS  Google Scholar 

  • Gauthier G, Klein BS (2008) Insights into Fungal Morphogenesis and Immune Evasion: fungal conidia, when situated in mammalian lungs, may switch from mold to pathogenic yeasts or spore-forming spherules. Microbe Wash DC 3:416–423

    PubMed  Google Scholar 

  • Goldman GH, dos Reis ME, Duarte Ribeiro DC et al (2003) Expressed sequence tag analysis of the human pathogen Paracoccidioides brasiliensis yeast phase: identification of putative homologues of Candida albicans virulence and pathogenicity genes. Eukaryot Cell 2:34–48

    PubMed  Google Scholar 

  • Gow NA (1995) Yeast-hyphal dimorphism. In: Gow NA, Gadd GM (eds) The growing fungus. Chapman & Hall, Oxford, pp 403–422

    Google Scholar 

  • Hahn RC, Macedo AM, Fontes CJ et al (2003) Randomly amplified polymorphic DNA as a valuable tool for epidemiological studies of Paracoccidioides brasiliensis. J Clin Microbiol 41:2849–2854

    PubMed  CAS  Google Scholar 

  • Hanna SA, Monteiro da Silva JL, Giannini MJ (2000) Adherence and intracellular parasitism of Paracoccidioides brasiliensis in Vero cells. Microbes Infect 2:877–884

    PubMed  CAS  Google Scholar 

  • Harris SD (2008) Hyphal morphogenesis in Aspergillus nidulans. In: Goldam GH, Osmani SA (eds) The Aspergilli genomics, medical aspects, biotechnology, and research methods. CRC, Boca Raton, FL

    Google Scholar 

  • Hernandez O, Almeida AJ, Gonzalez A et al (2010) A 32-kilodalton hydrolase plays an important role in Paracoccidioides brasiliensis adherence to host cells and influences pathogenicity. Infect Immun 78:5280–5286

    PubMed  CAS  Google Scholar 

  • Hogan LH, Klein BS (1994) Altered expression of surface alpha-1,3-glucan in genetically related strains of Blastomyces dermatitidis that differ in virulence. Infect Immun 62:3543–3546

    PubMed  CAS  Google Scholar 

  • Jakubowski H, Goldman E (1993) Methionine-mediated lethality in yeast cells at elevated temperature. J Bacteriol 175:5469–5476

    PubMed  CAS  Google Scholar 

  • Jung US, Sobering AK, Romeo MJ, Levin DE (2002) Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase. Mol Microbiol 46:781–789

    PubMed  CAS  Google Scholar 

  • Kanetsuna F, Carbonell LM, Azuma I, Yamamura Y (1972) Biochemical studies on the thermal dimorphism of Paracoccidioides brasiliensis. J Bacteriol 110:208–218

    PubMed  CAS  Google Scholar 

  • Klein BS, Tebbets B (2007) Dimorphism and virulence in fungi. Curr Opin Microbiol 10:314–319

    PubMed  CAS  Google Scholar 

  • Kurokawa CS, Lopes CR, Sugizaki MF et al (2005) Virulence profile of ten Paracoccidioides brasiliensis isolates: association with morphologic and genetic patterns. Rev Inst Med Trop Sao Paulo 47:257–262

    PubMed  Google Scholar 

  • Lengeler KB, Davidson RC, D’Souza C et al (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785

    PubMed  CAS  Google Scholar 

  • Levery SB, Toledo MS, Straus AH, Takahashi HK (1998) Structure elucidation of sphingolipids from the mycopathogen Paracoccidioides brasiliensis: an immunodominant beta-galactofuranose residue is carried by a novel glycosylinositol phosphorylceramide antigen. Biochemistry 37:8764–8775

    PubMed  CAS  Google Scholar 

  • Loose DS, Stover EP, Restrepo A, Stevens DA, Feldman D (1983) Estradiol binds to a receptor-like cytosol binding protein and initiates a biological response in Paracoccidioides brasiliensis. Proc Natl Acad Sci USA 80:7659–7663

    PubMed  CAS  Google Scholar 

  • Magee PT, Gale C, Berman J, Davis D (2003) Molecular genetic and genomic approaches to the study of medically important fungi. Infect Immun 71:2299–2309

    PubMed  CAS  Google Scholar 

  • Manocha MS (1980) Lipid composition of Paracoccidioides brasiliensis: comparison between the yeast and mycelial forms. Sabouraudia 18:281–286

    PubMed  CAS  Google Scholar 

  • Maresca B, Kobayashi GS (1989) Dimorphism in Histoplasma capsulatum: a model for the study of cell differentiation in pathogenic fungi. Microbiol Rev 53:186–209

    PubMed  CAS  Google Scholar 

  • Marques ER, Ferreira ME, Drummond RD et al (2004) Identification of genes preferentially expressed in the pathogenic yeast phase of Paracoccidioides brasiliensis, using suppression subtraction hybridization and differential macroarray analysis. Mol Genet Genomics 271:667–677

    PubMed  CAS  Google Scholar 

  • Marques ER, Ferreira ME, Drummond RD et al (2006) Identification of genes preferentially expressed in the pathogenic yeast phase of Paracoccidioides brasiliensis, using suppression subtraction hybridization and differential macroarray analysis. Mol Genet Genomics 271:667–677

    Google Scholar 

  • Marzluf GA (1997) Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol 51:73–96

    PubMed  CAS  Google Scholar 

  • Massuda TY, Nagashima LA, Leonello PC et al (2010) Cyclosporin A treatment and decreased fungal load/antigenemia in experimental murine paracoccidioidomycosis. Mycopathologia 171(3):161–169

    PubMed  Google Scholar 

  • Matute DR, McEwen JG, Puccia R et al (2006) Cryptic speciation and recombination in the fungus Paracoccidioides brasiliensis as revealed by gene genealogies. Mol Biol Evol 23:65–73

    PubMed  CAS  Google Scholar 

  • May GS (2008) Mitogen-activated protein kinase pathways in Aspergilli. In: Goldam GH, Osmani SA (eds) The Aspergilli genomics, medical aspects, biotechnology, and research methods. CRC, Boca Raton, FL

    Google Scholar 

  • Mazur P, Baginsky W (1996) In vitro activity of 1,3-beta-d-glucan synthase requires the GTP-binding protein Rho1. J Biol Chem 271:14604–14609

    PubMed  CAS  Google Scholar 

  • McEwen JG, Bedoya V, Patino MM, Salazar ME, Restrepo A (1987) Experimental murine paracoccidiodomycosis induced by the inhalation of conidia. J Med Vet Mycol 25:165–175

    PubMed  CAS  Google Scholar 

  • Medoff G, Sacco M, Maresca B et al (1986) Irreversible block of the mycelial-to-yeast phase transition of Histoplasma capsulatum. Science 231:476–479

    PubMed  CAS  Google Scholar 

  • Medoff G, Painter A, Kobayashi GS (1987) Mycelial- to yeast-phase transitions of the dimorphic fungi Blastomyces dermatitidis and Paracoccidioides brasiliensis. J Bacteriol 169:4055–4060

    PubMed  CAS  Google Scholar 

  • Mendes-Giannini MJ, Monteiro da Silva JL, De da Fatima Silva J et al (2008) Interactions of Paracoccidioides brasiliensis with host cells: recent advances. Mycopathologia 165:237–248

    PubMed  Google Scholar 

  • Molinari-Madlum EE, Felipe MS, Soares CM (1999) Virulence of Paracoccidioides brasiliensis isolates can be correlated to groups defined by random amplified polymorphic DNA analysis. Med Mycol 37:269–276

    PubMed  CAS  Google Scholar 

  • Monteiro JP, Clemons KV, Mirels LF et al (2009) Genomic DNA microarray comparison of gene expression patterns in Paracoccidioides brasiliensis mycelia and yeasts in vitro. Microbiology 155:2795–2808

    PubMed  CAS  Google Scholar 

  • Montoya AE, Moreno MN, Restrepo A, McEwen JG (1997) Electrophoretic karyotype of clinical isolates of Paracoccidioides brasiliensis. Fungal Genet Biol 21:223–227

    PubMed  CAS  Google Scholar 

  • Munro CA, Selvaggini S, de Bruijn I et al (2007) The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol Microbiol 63:1399–1413

    PubMed  CAS  Google Scholar 

  • Natorff R, Piotrowska M, Paszewski A (1998) The Aspergillus nidulans sulphur regulatory gene sconB encodes a protein with WD40 repeats and an F-box. Mol Gen Genet 257:255–263

    PubMed  CAS  Google Scholar 

  • Natorff R, Sienko M, Brzywczy J, Paszewski A (2003) The Aspergillus nidulans metR gene encodes a bZIP protein which activates transcription of sulphur metabolism genes. Mol Microbiol 49:1081–1094

    PubMed  CAS  Google Scholar 

  • Nelson WJ (2003) Adaptation of core mechanisms to generate cell polarity. Nature 422:766–774

    PubMed  CAS  Google Scholar 

  • Nemecek JC, Wuthrich M, Klein BS (2006) Global control of dimorphism and virulence in fungi. Science 312:583–588

    PubMed  CAS  Google Scholar 

  • Nern A, Arkowitz RA (2000) G proteins mediate changes in cell shape by stabilizing the axis of polarity. Mol Cell 5:853–864

    PubMed  CAS  Google Scholar 

  • Nino-Vega GA, Munro CA, San-Blas G, Gooday GW, Gow NA (2000) Differential expression of chitin synthase genes during temperature-induced dimorphic transitions in Paracoccidioides brasiliensis. Med Mycol 38:31–39

    PubMed  CAS  Google Scholar 

  • Nunes LR, Costa de Oliveira R, Leite DB et al (2005) Transcriptome analysis of Paracoccidioides brasiliensis cells undergoing mycelium-to-yeast transition. Eukaryot Cell 4:2115–2128

    PubMed  CAS  Google Scholar 

  • Osmani SA, Liu HL, Hynes MJ, Oakley BR (2008) Advances in gene manipulations using Aspergillus nidulans. In: Goldam GH, Osmani SA (eds) The Aspergilli genomics, medical aspects, biotechnology, and research methods. CRC, Boca Raton, FL

    Google Scholar 

  • Paris S, Duran S (1985) Cyclic adenosine 3′,5′ monophosphate (cAMP) and dimorphism in the pathogenic fungus Paracoccidioides brasiliensis. Mycopathologia 92:115–120

    PubMed  CAS  Google Scholar 

  • Paris S, Duran-Gonzalez S, Mariat F (1985) Nutritional studies on Paracoccidioides brasiliensis: the role of organic sulfur in dimorphism. Sabouraudia 23:85–92

    PubMed  CAS  Google Scholar 

  • Patton EE, Willems AR, Tyers M (1998) Combinatorial control in ubiquitin-dependent proteolysis: don’t Skp the F-box hypothesis. Trends Genet 14:236–243

    PubMed  CAS  Google Scholar 

  • Porta A, Eletto A, Torok Z et al (2010) Changes in membrane fluid state and heat shock response cause attenuation of virulence. J Bacteriol 192:1999–2005

    PubMed  CAS  Google Scholar 

  • Pringle JR, Bi E, Harkins HA et al (1995) Establishment of cell polarity in yeast. Cold Spring Harb Symp Quant Biol 60:729–744

    PubMed  CAS  Google Scholar 

  • Rappleye CA, Goldman WE (2006) Defining virulence genes in the dimorphic fungi. Annu Rev Microbiol 60:281–303

    PubMed  CAS  Google Scholar 

  • Rappleye CA, Engle JT, Goldman WE (2004) RNA interference in Histoplasma capsulatum demonstrates a role for alpha-(1,3)-glucan in virulence. Mol Microbiol 53:153–165

    PubMed  CAS  Google Scholar 

  • Restrepo A, Tobón A (2005) Paracoccidioides brasiliensis. In: Mandell GL, Bennett JE, Dollin R (eds) Principles and practice of infectious diseases. Churchill Livingstone, Philadelphia, PA

    Google Scholar 

  • Restrepo A, Salazar ME, Cano LE et al (1984) Estrogens inhibit mycelium-to-yeast transformation in the fungus Paracoccidioides brasiliensis: implications for resistance of females to paracoccidioidomycosis. Infect Immun 46:346–353

    PubMed  CAS  Google Scholar 

  • Restrepo A, McEwen JG, Castaneda E (2001) The habitat of Paracoccidioides brasiliensis: how far from solving the riddle? Med Mycol 39:233–241

    PubMed  CAS  Google Scholar 

  • Restrepo A, Benard G, de Castro CC, Agudelo CA, Tobon AM (2008) Pulmonary paracoccidioidomycosis. Semin Respir Crit Care Med 29:182–197

    PubMed  Google Scholar 

  • Rhome R, Del Poeta M (2009) Lipid signaling in pathogenic fungi. Annu Rev Microbiol 63:119–131

    PubMed  CAS  Google Scholar 

  • Rhome R, Del Poeta M (2010) Sphingolipid signaling in fungal pathogens. Adv Exp Med Biol 688:232–237

    PubMed  CAS  Google Scholar 

  • Richie DL, Hartl L, Aimanianda V et al (2009) A role for the unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus fumigatus. PLoS Pathog 5:e1000258

    PubMed  Google Scholar 

  • Rooney PJ, Klein BS (2002) Linking fungal morphogenesis with virulence. Cell Microbiol 4:127–137

    PubMed  CAS  Google Scholar 

  • Sabie FT, Gadd GM (1989) Involvement of a Ca2+-calmodulin interaction in the yeast-mycelial (Y-M) transition of Candida albicans. Mycopathologia 108:47–54

    PubMed  CAS  Google Scholar 

  • Sabie FT, Gadd GM (1992) Effect of nucleosides and nucleotides and the relationship between cellular adenosine 3′/5′-cyclic monophosphate (cyclic-AMP) and germ tube formation in Candida albicans. Mycopathologia 119:147–156

    PubMed  CAS  Google Scholar 

  • Salazar ME, Restrepo A, Stevens DA (1988) Inhibition by estrogens of conidium-to-yeast conversion in the fungus Paracoccidioides brasiliensis. Infect Immun 56:711–713

    PubMed  CAS  Google Scholar 

  • San-Blas F (1986) Ultrastructure of spore formation in Paracoccidioides brasiliensis. J Med Vet Mycol 24:203–210

    PubMed  CAS  Google Scholar 

  • San-Blas G, Nino-Vega G (2008) Paracoccidioides brasiliensis: chemical and molecular tools for research on cell walls, antifungals, diagnosis, taxonomy. Mycopathologia 165:183–195

    PubMed  Google Scholar 

  • San-Blas G, San-Blas F (1984) Molecular aspects of fungal dimorphism. Crit Rev Microbiol 11:101–127

    PubMed  CAS  Google Scholar 

  • San-Blas G, San-Blas F, Serrano LE (1977) Host-parasite relationships in the yeastlike form of Paracoccidioides brasiliensis strain IVIC Pb9. Infect Immun 15:343–346

    PubMed  CAS  Google Scholar 

  • San-Blas G, Nino-Vega G, Iturriaga T (2002) Paracoccidioides brasiliensis and paracoccidioidomycosis: molecular approaches to morphogenesis, diagnosis, epidemiology, taxonomy and genetics. Med Mycol 40:225–242

    PubMed  CAS  Google Scholar 

  • Schwarz J, Baum GL (1965) Pioneers in the discovery of deep fungus diseases. Mycopathol Mycol Appl 25:73–81

    PubMed  CAS  Google Scholar 

  • Silva SS, Paes HC, Soares CM, Fernandes L, Felipe MS (2008) Insights into the pathobiology of Paracoccidioides brasiliensis from transcriptome analysis – advances and perspectives. Mycopathologia 165:249–258

    PubMed  CAS  Google Scholar 

  • Soares CM, Madlun EE, da Silva SP, Pereira M, Felipe MS (1995) Characterization of Paracoccidioides brasiliensis isolates by random amplified polymorphic DNA analysis. J Clin Microbiol 33:505–507

    PubMed  CAS  Google Scholar 

  • Sonneborn A, Bockmuhl DP, Gerads M et al (2000) Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol Microbiol 35:386–396

    PubMed  CAS  Google Scholar 

  • Sorais F, Barreto L, Leal JA et al (2010) Cell wall glucan synthases and GTPases in Paracoccidioides brasiliensis. Med Mycol 48:35–47

    PubMed  CAS  Google Scholar 

  • Steinbach WJ, Schell WA, Blankenship JR et al (2004) In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. Antimicrob Agents Chemother 48:1664–1669

    PubMed  CAS  Google Scholar 

  • Stie J, Fox D (2008) Calcineurin regulation in fungi and beyond. Eukaryot Cell 7:177–186

    PubMed  CAS  Google Scholar 

  • Svidzinski TI, Miranda Neto MH, Santana RG, Fischman O, Colombo AL (1999) Paracoccidioides brasilienses isolates obtained from patients with acute and chronic disease exhibit morphological differences after animal passage. Rev Inst Med Trop Sao Paulo 41:279–283

    PubMed  CAS  Google Scholar 

  • Tavares AH, Silva SS, Dantas A et al (2007) Early transcriptional response of Paracoccidioides brasiliensis upon internalization by murine macrophages. Microbes Infect 9:583–590

    PubMed  CAS  Google Scholar 

  • Teixeira MM, Theodoro RC, de Carvalho MJ et al (2009) Phylogenetic analysis reveals a high level of speciation in the Paracoccidioides genus. Mol Phylogenet Evol 52:273–283

    PubMed  Google Scholar 

  • Tercarioli GR, Bagagli E, Reis GM et al (2007) Ecological study of Paracoccidioides brasiliensis in soil: growth ability, conidia production and molecular detection. BMC Microbiol 7:92

    PubMed  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    PubMed  CAS  Google Scholar 

  • Toledo MS, Levery SB, Straus AH et al (1999) Characterization of sphingolipids from mycopathogens: factors correlating with expression of 2-hydroxy fatty acyl (E)-Delta 3-unsaturation in cerebrosides of Paracoccidioides brasiliensis and Aspergillus fumigatus. Biochemistry 38:7294–7306

    PubMed  CAS  Google Scholar 

  • Vigh L, Escriba PV, Sonnleitner A et al (2005) The significance of lipid composition for membrane activity: new concepts and ways of assessing function. Prog Lipid Res 44:303–344

    PubMed  CAS  Google Scholar 

  • Wedlich-Soldner R, Altschuler S, Wu L, Li R (2003) Spontaneous cell polarization through actomyosin-based delivery of the Cdc42 GTPase. Science 299:1231–1235

    PubMed  CAS  Google Scholar 

  • Whiteway M, Bachewich C (2007) Morphogenesis in Candida albicans. Annu Rev Microbiol 61:529–553

    PubMed  CAS  Google Scholar 

  • Whiteway M, Oberholzer U (2004) Candida morphogenesis and host-pathogen interactions. Curr Opin Microbiol 7:350–357

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iran Malavazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Malavazi, I., Goldman, G.H. (2012). Morphogenesis in Paracoccidioides brasiliensis . In: Pérez-Martín, J., Di Pietro, A. (eds) Morphogenesis and Pathogenicity in Fungi. Topics in Current Genetics, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22916-9_9

Download citation

Publish with us

Policies and ethics