Intuitive Method for Pedestrians in Virtual Environments

Part of the Studies in Computational Intelligence book series (SCI, volume 374)


Recent works about pedestrian simulation can actually be sorted in two categories. The first ones focusing on large crowd simulation aim to solve performance and scalability issues at the expense of behavioral realism of each simulated individual. The second ones aim at individual behavioral realism but the computational cost is too expensive to simulate crowds. In this paper, we propose an alternate approach combining a light reactive behavior with cognitive strategies issued from real life videos. This approach aims at the real time simulation of small crowds of pedestrians (one to two hundred individuals) but with concerns for visual realism regarding heterogeneous behaviors, trajectories and positioning on sidewalks.


crowd pedestrians heterogeneity small groups anticipation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdul Karim, A., Sanza, C.: Learning by implicit imitation in virtual worlds. In: CASA 2010, Workshop on Crowd Simulation, Saint-Malo (2010)Google Scholar
  2. 2.
    Daamen, W., Hoogendoorn, S.P.: Experimental research of pedestrian walking behavior. In: Transportation Research Board Annual Meeting, pp. 1–16 (2003)Google Scholar
  3. 3.
    Ennis, C., Gerdelan, A., O’Sullivan, C.: Plausible Methods For Populating Virtual Scenes. In: CASA (2010)Google Scholar
  4. 4.
    Helbing, D., Molnar, P., Farkas, I.J., Bolay, K.: Self-organizing Pedestrian Movement. Environment and Planning B: Planning and Design (2001)Google Scholar
  5. 5.
    Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-organized pedestrian crowd dynamics: Experiments, simulations, and design solutions. Transportation Science 39(1), 1–24 (2005)CrossRefGoogle Scholar
  6. 6.
    Hughes, R.L.: The Flow of Human Crowds. Annual Review of Fluid Mechanics 35 (2003)Google Scholar
  7. 7.
    Lerner, A., Chrysanthou, Y., Lischinsky, D.: Crowds by Example. In: Eurographics (2007)Google Scholar
  8. 8.
    Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate Dynamics for Dense Crowd Simulation. In: Siggraph Asia (2009)Google Scholar
  9. 9.
    Panzoli, D., Peters, C., Dunwell, I., Sanchez, S., Petridis, P., Protopsaltis, A., Scesa, V., de Freitas, S.: A Level of Interaction Framework for Exploratory Learning with Characters in Virtual Environments. In: Plemenos, D., Miaoulis, G. (eds.) Intelligent Computer Graphics 2010. SCI, vol. 321, pp. 123–143. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling Individual Agents in High-Density Crowd Simulation. In: ACM Siggraph/Eurographics Symposium on Computer Animation (2007)Google Scholar
  11. 11.
    Shao, W., Terzopoulos, D.: Autonomous Pedestrians. ACM Siggraph/Eurographics Symposium on Computer Animation (2005)Google Scholar
  12. 12.
    Treuille, A., Cooper, S., Popovic, Z.: Continuum Crowds. In: Siggraph (2006)Google Scholar
  13. 13.
    Usher, J.M., Strawderman, L.: Simulation of Emergent Crowd Behavior Using Microsimulation of Individual Pedestrians. Computers & Industrial Engineering 59, 736–747 (2010)CrossRefGoogle Scholar
  14. 14.
    Yersin, B., Maïm, J., Pettré, J., Thalmann, D.: Crowd Patches: Populating Large-Scale Virtual Environments for Real-Time Applications. In: Proceedings of Symposium on Interactive 3D Graphics and Games (2009)Google Scholar
  15. 15.
    Weidmann, U.: Transporttechnik der Fußgänger. IVT (90) (1993)Google Scholar
  16. 16.
    Weng, W.G., Shen, S.F., Yuan, H.Y., Fan, W.C.: A behavior-based model for pedestrian counter flow. Physica A: Statistical and Theoretical Physics 375 2, 668–678 (2007)CrossRefGoogle Scholar
  17. 17.
    Zertal, S., Djedi, N., Sanza, C., Sanchez, S., Duthen, Y.: Exploitation des niveaux de détails dans la simulation du comportement d’humains virtuels. In: 1st International Conference on Information Systems and Technologies (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.IRIT, Vortex teamUniversity of ToulouseToulouseFrance

Personalised recommendations