Advertisement

Techniques for Extracting and Modeling Geometric Features from Point Cloud Data Sets with Application to Urban Terrain Modeling

Chapter
  • 532 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 374)

Abstract

Some new methods for extracting geometric features in point clouds are described. In addition new methods for including these geometric entities into implicit mathematical models are also discussed. Applications of these new techniques to the modeling of urban terrain data are illustrated.

Keywords

Scattered data point clouds urban terrain modeling implicit mathematical models scientific visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloomenthal, J., Bajaj, C., Blinn, J., Cani-Gascuel, M., Rockwood, A., Wyvill, B., Wyvill, G.: Introduction to Implicit Surfaces. Morgan Kaufmann, San Francisco (1999)Google Scholar
  2. 2.
    Cureless, G., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of SIGGRAPH 1996. Annual Conference Series, pp. 303–312. ACM Press/ACM SIGGRAPH, New York (1996)CrossRefGoogle Scholar
  3. 3.
    Franke, R., Nielson, G.M.: Scattered data interpolation and applications: A tutorial and survey. In: Hagen, H., Roller, D. (eds.) Geometric Modelling: Methods and Their Applications, pp. 131–160 (1990)Google Scholar
  4. 4.
    Klimenko, S., Nikitin, I., Burkin, V.: Visualization of Complex Physical Phenomena and Mathematical Objects in Virtual Environment. In: Scientific Visualization, Dagstuhl 1997, pp. 151–161. IEEE Computer Society Press, Germany (1999)Google Scholar
  5. 5.
    Mitra, N., Nguyen, A., Guibas, L.: Estimating surface normals in noisy point cloud data. International Journal of Computation Geometry & Applications, 123–145 (2004)Google Scholar
  6. 6.
    Mueller, H.: Surface Reconstruction – An introduction. In: Hagen, H., Nielson, G., Post, F. (eds.) Scientific Visualization, pp. 239–242. IEEE Computer Society Press, Germany (1990)Google Scholar
  7. 7.
    Nielson, G.: Scattered data modeling. Computer Graphics and Applications 13, 60–70 (1993)CrossRefGoogle Scholar
  8. 8.
    Nielson, G.: Normalized implicit eigenvector least squares operations for noisy scattered data: radial basis functions. Computer 86(2-3), 199–212 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Nielson, G.: Dual Marching Tetrahedra: Contouring in the Tegrhedronal Environment. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters, J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 183–194. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Schumaker, L.: Fitting surfaces to scattered data. In: Lorentz, G., Chui, C.K., Schumaker, L.L. (eds.) Approximation Theroy II, pp. 203–268 (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Computer Science and MathematicsArizona State UniversityTempeUSA

Personalised recommendations