Active and Reactive Power Control of Grid Connected Distributed Generation Systems

Part of the Green Energy and Technology book series (GREEN)


The present chapter describes active and reactive power control for distributed generation and storage systems connected to the grid by means of voltage source converters. Renewable generation and storage systems connected to a three-phase three-wire grid are considered. The different system components are described and modelled. The overall active and reactive power control scheme based on the instantaneous power theory is described. The fundamental necessary control blocks are detailed including the phase locked loop, current controllers, current references calculation and DC bus voltage controllers. Simulations results are provided to exemplify the described control approach.


Proportional Integrator Controller Phase Lock Loop Power Converter Voltage Source Converter Reactive Power Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Farhangi, H.: The path of the smart grid. IEEE Power and Energy Magazine 8(1), 18–28 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Venkataramanan, G., Marnay, C.: A larger role for microgrids. IEEE Power and Energy Magazine 6(3), 78–82 (2008)CrossRefGoogle Scholar
  3. 3.
    Kroposki, B., Lasseter, R., Ise, T., Morozumi, S., Papatlianassiou, S., Hatziargyriou, N.: Making microgrids work. IEEE Power and Energy Magazine 6(3), 40–53 (2008)CrossRefGoogle Scholar
  4. 4.
    Mohan, N., Undeland, T., Robbins, W.P.: Power Electronics: Converters, Applications, and Design. Wiley, Chichester (1995)Google Scholar
  5. 5.
    Bose, B.K.: Modern Power Electronics and AC Drives. Prentice Hall PTR, Englewood Cliffs (2001)Google Scholar
  6. 6.
    Kazmierkowski, M.P., Krishnan, R., Blaabjerg, F.: Control in power electronics. Elsevier, Amsterdam (2002)Google Scholar
  7. 7.
    Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., Galvan, E., Guisado, R.C.P., Prats, M.A.M., Leon, J.I., Moreno-Alfonso, N.: Power-electronic systems for the grid integration of renewable energy sources: A survey. IEEE Transactions on Industrial Electronics 53(4), 1002–1016 (2006)CrossRefGoogle Scholar
  8. 8.
    Malesani, L., Tomasin, P.: Pwm current control techniques of voltage source converters-a survey. In: International Conference on Industrial Electronics, Control, and Instrumentation. Proceedings of the IECON 1993, November 1993, vol. 2, pp. 670–675 (1993)Google Scholar
  9. 9.
    Kazmierkowski, M.P., Malesani, L.: Current control techniques for three-phase voltage-source pwm converters: a survey. IEEE Transactions on Industrial Electronics 45(5), 691–703 (1998)CrossRefGoogle Scholar
  10. 10.
    Holtz, J.: Pulsewidth modulation for electronic power conversion. Proceedings of the IEEE 82(8), 1194–1214 (1994)CrossRefGoogle Scholar
  11. 11.
    Song, H.-S., Nam, K.: Dual current control scheme for pwm converter under unbalanced input voltage conditions. IEEE Transactions on Industrial Electronics 46(5), 953–959 (1999)CrossRefGoogle Scholar
  12. 12.
    Hu, J., He, Y.: Modeling and control of grid-connected voltage-sourced converters under generalized unbalanced operation conditions. IEEE Transactions on Energy Conversion 23(3), 903–913 (2008)CrossRefGoogle Scholar
  13. 13.
    Noguchi, T., Tomiki, H., Kondo, S., Takahashi, I.: Direct power control of pwm converter without power-source voltage sensors. IEEE Transactions on Industry Applications 34(3), 473–479 (1998)CrossRefGoogle Scholar
  14. 14.
    Rodriguez, J., Pontt, J., Silva, C.A., Correa, P., Lezana, P., Cortes, P., Ammann, U.: Predictive current control of a voltage source inverter. IEEE Transactions on Industrial Electronics 54(1), 495–503 (2007)CrossRefGoogle Scholar
  15. 15.
    Akagi, H., Kanazawa, Y., Nabae, A.: Generalized theory of the instantaneous reactive power in three-phase circuits. In: International Power Electronics Conference, pp. 1375–1386 (1983)Google Scholar
  16. 16.
    Akagi, H., Watanabe, E., Aredes, M.: Instantaneous power theory and Applications to power conditioning. Wiley, Chichester (2007)CrossRefGoogle Scholar
  17. 17.
    Clarke, E.: Circuit Analysis of AC Power. John Wiley and Sons, Chichester (1941)Google Scholar
  18. 18.
    Park, R.H.: Two-reaction theory of synchronous machines. AIEE Transactions 48, 716–730 (1929)Google Scholar
  19. 19.
    Harnefors, L., Nee, H.-P.: Model-based current control of ac machines using the internal model control method. IEEE Transactions on Industry Applications 34(1), 133–141 (1998)CrossRefGoogle Scholar
  20. 20.
    Chung, S.-K.: A phase tracking system for three phase utility interface inverters. IEEE Transactions on Power Electronics 15, 431–438 (2000)CrossRefGoogle Scholar
  21. 21.
    Bergas, J.: Control del motor d’inducció considerant els límits del convertidor i del motor. PhD thesis, Technical University of Catalonia, UPC (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Centre d’Innovació Tecnològica en Convertidors Estàtics i Accionaments (CITCEA-UPC)Universitat Politècnica de Catalunya UPCBarcelonaSpain
  2. 2.IREC Catalonia Institute for Energy ResearchBarcelonaSpain

Personalised recommendations