Abstract
Artificial General Intelligence will not be general without computer vision. Biologically inspired adaptive vision models have started to outperform traditional pre-programmed methods: our fast deep / recurrent neural networks recently collected a string of 1st ranks in many important visual pattern recognition benchmarks: IJCNN traffic sign competition, NORB, CIFAR10, MNIST, three ICDAR handwriting competitions. We greatly profit from recent advances in computing hardware, complementing recent progress in the AGI theory of mathematically optimal universal problem solvers.
Keywords
- AGI
- Fast Deep Neural Nets
- Computer Vision
- Hardware Advances vs Theoretical Progress
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Behnke, S.: Hierarchical Neural Networks for Image Interpretation. LNCS, vol. 2766. Springer, Heidelberg (2003)
Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep big simple neural nets for handwritten digit recogntion. Neural Computation 22(12), 3207–3220 (2010)
Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: High-performance neural networks for visual object classification. arxiv 1102.0183 (2011)
Ciresan, D.C., Meier, U., Masci, J., Schmidhuber, J.: A committee of neural networks for traffic sign classification. In: International Joint Conference on Neural Networks to appear (2011)
Fukushima, K.: Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 193–202 (1980)
Fukushima, K.: Neocognitron for handwritten digit recognition. Neurocomputing 51, 161–180 (2003)
Graves, A., Fernández, S., Schmidhuber, J.: Multi-dimensional recurrent neural networks. In: Proceedings of the 17th International Conference on Artificial Neural Networks (September 2007)
Graves, A., Schmidhuber, J.: Offline handwriting recognition with multidimensional recurrent neural networks. In: Advances in Neural Information Processing Systems, vol. 21, MIT Press, Cambridge (2009)
Hochreiter, S., Schmidhuber, J.: Flat minima. Neural Computation 9(1), 1–42 (1997)
Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Springer, Berlin (2004); (On J. Schmidhuber’s SNF grant 20-61847)
Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, Computer Science Department, University of Toronto (2009)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Proc. of Computer Vision and Pattern Recognition Conference (2004)
Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)
Newell, A., Simon, H.: GPS, a program that simulates human thought. In: Feigenbaum, E., Feldman, J. (eds.) Computers and Thought, pp. 279–293. McGraw-Hill, New York (1963)
Rosenbloom, P.S., Laird, J.E., Newell, A.: The SOAR Papers. MIT Press, Cambridge (1993)
Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: International Conference on Artificial Neural Networks (2010)
Schmidhuber, J.: Learning factorial codes by predictability minimization. Neural Computation 4(6), 863–879 (1992)
Schmidhuber, J.: The new AI: General & sound & relevant for physics. In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence, pp. 175–198. Springer, Heidelberg (2006); also available as TR IDSIA-04-03, arXiv:cs.AI/0302012
Schmidhuber, J.: New millennium AI and the convergence of history. In: Duch, W., Mandziuk, J. (eds.) Challenges to Computational Intelligence. Studies in Computational Intelligence, vol. 63, pp. 15–36. Springer, Heidelberg (2007); arXiv:cs.AI/0606081
Schmidhuber, J.: Ultimate cognition à la Gödel. Cognitive Computation 1(2), 177–193 (2009)
Schmidhuber, J., Eldracher, M., Foltin, B.: Semilinear predictability minimization produces well-known feature detectors. Neural Computation 8(4), 773–786 (1996)
Schmidhuber, J., Huber, R.: Learning to generate artificial fovea trajectories for target detection. International Journal of Neural Systems 2(1 & 2), 135–141 (1991)
Schraudolph, N.N., Eldracher, M., Schmidhuber, J.: Processing images by semi-linear predictability minimization. Network: Computation in Neural Systems 10(2), 133–169 (1999)
Simard, P., Steinkraus, D., Platt, J.: Best practices for convolutional neural networks applied to visual document analysis. In: Seventh International Conference on Document Analysis and Recognition, pp. 958–963 (2003)
Utgoff, P.: Shift of bias for inductive concept learning. In: Michalski, R., Carbonell, J., Mitchell, T. (eds.) Machine Learning, vol. 2, pp. 163–190. Morgan Kaufmann, Los Altos (1986)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schmidhuber, J., Cireşan, D., Meier, U., Masci, J., Graves, A. (2011). On Fast Deep Nets for AGI Vision. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds) Artificial General Intelligence. AGI 2011. Lecture Notes in Computer Science(), vol 6830. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22887-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-22887-2_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22886-5
Online ISBN: 978-3-642-22887-2
eBook Packages: Computer ScienceComputer Science (R0)