Skip to main content

From Memory to Problem Solving: Mechanism Reuse in a Graphical Cognitive Architecture

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 6830)

Abstract

This article describes the extension of a memory architecture that is implemented via graphical models to include core aspects of problem solving. By extensive reuse of the general graphical mechanisms originally developed to support memory, this demonstrates how a theoretically elegant implementation level can enable increasingly broad architectures without compromising overall simplicity and uniformity. In the process, it bolsters the potential of such an approach for developing the more complete architectures that will ultimately be necessary to support autonomous general intelligence.

Keywords

  • Cognitive architecture
  • graphical models
  • memory
  • problem solving

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-22887-2_15
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-22887-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenbloom, P.S.: Rethinking Cognitive Architecture via Graphical Models. Cognitive Systems Research (In press)

    Google Scholar 

  2. Goertzel, B.: OpenCogPrime: A cognitive synergy based architecture for artificial general intelligence. In: 8th IEEE International Conference on Cognitive Informatics (2009)

    Google Scholar 

  3. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Springer, Berlin (2005)

    MATH  Google Scholar 

  4. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    Google Scholar 

  5. Rosenbloom, P.S.: Combining Procedural and Declarative Knowledge in a Graphical Architecture. In: 10th International Conference on Cognitive Modeling (2010)

    Google Scholar 

  6. Laird, J.E.: Extending the Soar Cognitive Architecture. In: Artificial General Intelligence 2008: Proceedings of the First AGI Conference. IOS Press, Arlington (2008)

    Google Scholar 

  7. Anderson, J.R.: The Adaptive Character of Thought. Erlbaum, Hillsdale (1990)

    Google Scholar 

  8. Rosenbloom, P.S., Laird, J.E., Newell, A.: Meta-levels in Soar. In: Maes, P., Nardi, D. (eds.) Meta-Level Architectures and Reflection, pp. 227–240. North Holland, Amsterdam (1988)

    Google Scholar 

  9. Forgy, C.L.: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem. Artificial Intelligence 19, 17–37 (1982)

    CrossRef  Google Scholar 

  10. Kschischang, F.R., Frey, B.J., Loeliger, H.: Factor Graphs and the Sum-Product Algorithm. IEEE Transactions on Information Theory 47, 498–519 (2001)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Rosenbloom, P.S.: Implementing First-Order Variables in a Graphical Cognitive Architecture. In: Biologically Inspired Cognitive Architectures 2010: Proceedings of the First Annual Meeting of the BICA Society. IOS Press, Arlington (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosenbloom, P.S. (2011). From Memory to Problem Solving: Mechanism Reuse in a Graphical Cognitive Architecture. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds) Artificial General Intelligence. AGI 2011. Lecture Notes in Computer Science(), vol 6830. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22887-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22887-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22886-5

  • Online ISBN: 978-3-642-22887-2

  • eBook Packages: Computer ScienceComputer Science (R0)