Skip to main content

Integrating Perception and Cognition for AGI

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNAI,volume 6830)

Abstract

Current perceptual algorithms are error-prone and require the use of additional ad hoc heuristic methods that detect and recover from these errors. In this paper we explore how existing architectural mechanisms in a high-level cognitive architecture like ACT-R can be used instead of such ad hoc measures. In particular, we describe how implicit learning that results from ACT-R’s architectural features of partial matching and blending can be used to recover from errors in object identification, tracking and action prediction. We demonstrate its effectiveness by building a model that can identify and track objects as well as predict their actions in a simple checkpoint scenario.

Keywords

  • Cognitive Architectures
  • Integrating Perception & Action
  • Object Tracking
  • Instance-based Learning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-22887-2_11
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-22887-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Laird, J.E.: Towards Cognitive Robotics. In: SPIE Defense and Sensing Conferences, Orlando, FL (2009)

    Google Scholar 

  2. Wojek, C., Walk, S., Schiele, S.: Multi-Cue Onbaord Pedestrian Detection. In: CVPR, pp. 1–8 (2009)

    Google Scholar 

  3. Anderson, J.R.: How Can the Human Mind Occur in the Physical Universe? Oxford University Press, New York (2007)

    CrossRef  Google Scholar 

  4. Lebiere, C., Wallach, D.: Sequence learning in the ACT-R cognitive architecture: Empirical analysis of a hybrid model. In: Sun, R., Giles, L. (eds.) Sequence Learning: Paradigms, Algorithms, and Applications. LNCS/LNAI. Spinger, Germany (2001)

    Google Scholar 

  5. Lebiere, C., West, R.L.: A dynamic ACT-R model of simple games. In: Proceedings of the Twenty-First Conference of the Cognitive Science Society, pp. 296–301. Erlbaum, Mahwah (1999)

    Google Scholar 

  6. West, R.L., Lebiere, C.: Simple games as dynamic, coupled systems: Randomness and other emergent properties. Journal of Cognitive Systems Research 1(4), 221–239 (2001)

    CrossRef  Google Scholar 

  7. Lebiere, C., Gonzalez, C., Martin, M.: Instance-based decision-making model of repeated binary choice. In: Proceedings of the 8th International Conference on Cognitive Modeling, Ann Arbor (2007)

    Google Scholar 

  8. Erev, I., Ert, E., Roth, A.E., Haruvy, E., Herzog, S., Hau, R., Hertwig, R., Stewart, T., West, R., Lebiere, C.: A choice prediction competition, for choices from experience and from description. Journal of Behavioral Decision Making 23(1), 15–47 (2010)

    CrossRef  Google Scholar 

  9. Gonzalez, C., Lerch, J.F., Lebiere, C.: Instance-based learning in dynamic decision making. Cognitive Science 27, 591–635 (2003)

    CrossRef  Google Scholar 

  10. Lebiere, C., Gonzalez, C., Warwick, W.: Convergence and constraints revealed in a qualitative model comparison. Journal of Cognitive Engineering and Decision Making 3(2), 131–155 (2009)

    CrossRef  Google Scholar 

  11. Wintermute, S., Laird, J.E.: Bimodal Spatial Reasoning with Continuous Motion. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (AAAI 2008), Chicago, Illinois (2008)

    Google Scholar 

  12. Trafton, J.G., Harrison, A.M., Fransen, B.: An embodied model of infant gaze-following. International Conference of Cognitive Modeling (2009)

    Google Scholar 

  13. Trafton, J.G., Schultz, A.C., Perzanowski, D., Bugajska, M.D., Adams, W., Cassimatis, N.L., Brock, D.P.: Children and robots learning to play hide and seek. Human Robot Interaction (2006)

    Google Scholar 

  14. Granger, R.: Engines of the brain: The computational instruction set of human cognition. AI Magazine 27(2), 15–31 (2006)

    Google Scholar 

  15. Hawkins, J., Blakeslee, S.: On Intelligence. Times Books, NY (2004)

    Google Scholar 

  16. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychological Review 111(4), 1036–1060 (2004)

    CrossRef  Google Scholar 

  17. Anderson, J.R.: The Adaptive Character of Thought. Erlbaum, Hillsdale (1990)

    Google Scholar 

  18. Lebiere, C.: The dynamics of cognitive arithmetic. In: Wallach, D., Simon, H.A. (eds.) Kognitionswissenschaft, vol. 8 (1), pp. 5–19 (1999)

    Google Scholar 

  19. Gonzalez, C., Lebiere, C.: Instance-based cognitive models of decision-making. In: Zizzo, D., Courakis, A. (eds.) Transfer of knowledge in economic decision making, Palgrave McMillan, New York (2005)

    Google Scholar 

  20. Wallach, D., Lebiere, C.: Conscious and unconscious knowledge: Mapping to the symbolic and subsymbolic levels of a hybrid architecture. In: Jimenez, L. (ed.) Attention and Implicit Learning, John Benjamins Publishing Company, Amsterdam (2003)

    Google Scholar 

  21. Fauconnier, G., Turner, M.: Conceptual Integration Networks. Cognitive Science 22(2), 133–187 (1998)

    CrossRef  Google Scholar 

  22. Rumelhart, D.E., McClelland, J.L., the PDP Research Group: Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge (1986)

    Google Scholar 

  23. O’Reilly, R.C., Munakata, Y.: Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. MIT Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurup, U., Lebiere, C., Stentz, A. (2011). Integrating Perception and Cognition for AGI. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds) Artificial General Intelligence. AGI 2011. Lecture Notes in Computer Science(), vol 6830. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22887-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22887-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22886-5

  • Online ISBN: 978-3-642-22887-2

  • eBook Packages: Computer ScienceComputer Science (R0)