Distributed Deadlock Handling for Resource Allocation in Smart Spaces

  • Rehan Abdul Aziz
  • Tomi Janhunen
  • Vesa Luukkala
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6869)

Abstract

In a ubiquitous system, there are several interacting computational objects which use each others’ resources. As the number of resources and their consumers grow in such systems, the delay that the consumers experience for obtaining control over resources increases with an existing rule-based resource allocation technique. Distributing the resource allocation, however, complicates the nature of deadlocks that may arise and requires more sophisticated techniques as compared to a setup with central control. The goal of this paper is to generalize the current resource allocation method to a distributed setting and, in particular, to propose an approach for handling deadlocks in this case.

Keywords

semantic web resource allocation distributed deadlock answer set programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aziz, R.A.: Testing scalability of SSLS rule engine, http://sourceforge.net/projects/ssls/files/raaziz11.pdf
  2. 2.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (May 2001)Google Scholar
  3. 3.
    Chandy, K., Misra, J., Haas, L.: Distributed deadlock detection. ACM Trans. Comput. Syst. 1(2), 144–156 (1983)CrossRefGoogle Scholar
  4. 4.
    Elmagarmid, A., Sheth, A., Liu, M.: A partially distributed deadlock detection algorithm. International Journal of Parallel Programming 14, 307–330 (1985)MATHGoogle Scholar
  5. 5.
    Främling, K., Oliver, I., Honkola, J., Nyman, J.: Smart spaces for ubiquitously smart buildings. In: Proceedings of the 3rd International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM 2009) (October 2009)Google Scholar
  6. 6.
    Honkola, J., Laine, H., Brown, R., Oliver, I.: Cross-domain interoperability: A case study. In: Balandin, S., Moltchanov, D., Koucheryavy, Y. (eds.) ruSMART 2009. LNCS, vol. 5764, pp. 22–31. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Krivokapic, N., Kemper, A., Gudes, E.: Deadlock detection in distributed database systems: A new algorithm and a comparative performance analysis. VLDB J. 8(2), 79–100 (1999)CrossRefGoogle Scholar
  8. 8.
    Lassila, O.: Programming Semantic Web Applications: A Synthesis of Knowledge Representation and Semi-Structured Data. PhD thesis, Helsinki University of Technology (November 2007)Google Scholar
  9. 9.
    Lifschitz, V.: Answer set planning. In: Proceedings of the 16th International Conference on Logic Programming, pp. 25–37. MIT Press, Cambridge (1999)Google Scholar
  10. 10.
    Luukkala, V., Binnema, D.-J., Borzsei, M., Corongiu, A., Hyttinen, P.: Experiences in implementing a cross-domain use case by combining semantic and service level platforms. In: Proceedings of the The IEEE symposium on Computers and Communications, ISCC 2010, pp. 1071–1076 (2010)Google Scholar
  11. 11.
    Luukkala, V., Honkola, J.: Integration of an answer set engine to SMART-M3. In: Proceedings of the Third Conference on Smart Spaces and Next Generation Wired, and 10th International Cconference on Wireless Networking, SMART/NEW2AN 2010, pp. 92–101. Springer, Heidelberg (2010)Google Scholar
  12. 12.
    Luukkala, V., Niemelä, I.: Enhancing a smart space with answer set programming. In: Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp. 89–103. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Marek, W., Truszczyński, M.: Stable models and an alternative logic programming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Menascé, D., Muntz, R.: Locking and deadlock detection in distributed data bases. IEEE Trans. Software Eng. 5(3), 195–202 (1979)CrossRefMATHGoogle Scholar
  15. 15.
    Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Ann. Math. Artif. Intell. 25(3-4), 241–273 (1999)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
  17. 17.
    Web ontology language, http://www.w3.org/2004/OWL/
  18. 18.
    Resource description framework, http://www.w3.org/RDF/
  19. 19.
    RDF vocabulary description language, http://www.w3.org/TR/rdf-schema
  20. 20.
    Singhal, M.: Deadlock detection in distributed systems. Computer 22(11), 37–48 (1989)CrossRefGoogle Scholar
  21. 21.
    Smirnov, A., Kashevnik, A., Shilov, N., Oliver, I., Balandin, S., Boldyrev, S.: Anonymous agent coordination in smart spaces: State-of-the-art. In: Balandin, S., Moltchanov, D., Koucheryavy, Y. (eds.) ruSMART 2009. LNCS, vol. 5764, pp. 42–51. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    W3C recommendation: SPARQL query language for RDFGoogle Scholar
  24. 24.
    Weiser, M.: The computer for the twenty-first century. Scientific American 265(3), 94–104 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rehan Abdul Aziz
    • 1
  • Tomi Janhunen
    • 1
  • Vesa Luukkala
    • 2
  1. 1.Department of Information and Computer ScienceAalto University School of ScienceFinland
  2. 2.Nokia Research CenterFinland

Personalised recommendations