Advertisement

A Cooperative Network Monitoring Overlay

  • Vasco Castro
  • Paulo Carvalho
  • Solange Rito Lima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6869)

Abstract

This paper proposes a flexible network monitoring overlay which resorts to cooperative interaction among measurement points to monitor the quality of network services. The proposed overlay model, which relies on the definition of representative measurement points, the avoidance of measurement redundancy and a simple measurement methodology as main design goals, is able to articulate intra- and inter-area measurements efficiently. The distributed nature of measurement control and data confers to the model the required autonomy, robustness and adaptiveness to accommodate network topology evolution, routing changes or nodes failure. In addition to these characteristics, the avoidance of explicit addressing and routing at the overlay level, and the low-overhead associated with the measurement process constitute a step forward for deploying large scale monitoring solutions. A JAVA prototype was also implemented to test the conceptual model design.

Keywords

Network Monitoring Quality of Service Overlay Networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Habib, A., Khan, M., Bhargava, B.: Edge-to-edge measurement-based distributed network monitoring. Computer Networks 44, 211–233 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Blefari-Melazzi, N., Femminella, M.: Measuring the edge-to-edge available bandwidth in a DiffServ domain. Int. J. Netw. Manag. 18, 409–426 (2008)CrossRefGoogle Scholar
  3. 3.
    Duffield, N., Lo Presti, F., Paxson, V., Towsley, D.: Inferring link loss using striped unicast probes. In: Proceedings Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2001, vol. 2, pp. 915–923. IEEE, Los Alamitos (2001)Google Scholar
  4. 4.
    Jain, M., Dovrolis, C.: End-to-end available bandwidth: measurement methodology, dynamics, and relation with TCP throughput. IEEE/ACM Trans. Netw. 11, 537–549 (2003)CrossRefGoogle Scholar
  5. 5.
    Lin, Y.-J., Chan, M.C.: A scalable monitoring approach based on aggregation and refinement. IEEE JSAC 20 (2002)Google Scholar
  6. 6.
    Asgari, A(H.), Egan, R., Trimintzios, P., Pavlou, G.: Scalable monitoring support for resource management and service assurance. IEEE Network 18(6), 6–18 (2004)CrossRefGoogle Scholar
  7. 7.
    Wuhib, F., Stadler, R., Clemm, A.: Decentralized service-level monitoring using network threshold crossing alerts. IEEE Communications Magazine 44(10), 70–76 (2006)CrossRefGoogle Scholar
  8. 8.
    Vardi, Y.: Network Tomography: Estimating Source-Destination Traffic Intensities from Link Data. Journal of the American Statistical Association 91(433), 365–377 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., Diot, C.: Traffic Matrix Estimation: Existing Techniques and New Directions. In: ACM SIGCOMM (2002)Google Scholar
  10. 10.
    Gu, Y., Jiang, G., Singh, V., Zhang, Y.: Optimal probing for unicast network delay tomography. In: INFOCOM 2010, pp. 1244–1252. IEEE Press, Piscataway (2010)Google Scholar
  11. 11.
    Burch, H., Chase, C.: Monitoring link delays with one measurement host. SIGMETRICS Perform. Eval. Rev. 33, 10–17 (2005)CrossRefGoogle Scholar
  12. 12.
    Arya, V., Duffield, N., Veitch, D.: Temporal Delay Tomography. In: INFOCOM, pp. 276–280 (2008)Google Scholar
  13. 13.
    Huang, Y., Feamster, N., Teixeira, R.: Practical issues with using network tomography for fault diagnosis. SIGCOMM Comput. Commun. Rev. 38, 53–58 (2008)CrossRefGoogle Scholar
  14. 14.
    Chen, Y., Bindel, D., Katz, Y.H.: Tomography-based Overlay Network Monitoring. In: ACM SIGCOMM Internet Measurement Conference (IMC), pp. 216–231. ACM Press, New York (2003)Google Scholar
  15. 15.
    Ratnasamy, S., Handley, M., Karp, R.M., Shenker, S.: Topologically-Aware Overlay Construction and Server Selection. In: INFOCOM (2002)Google Scholar
  16. 16.
    Ni, J., 0002, H.X., Tatikonda, S., Yang, Y.R.: Network Routing Topology Inference from End-to-End Measurements. In: INFOCOM, pp. 36–40 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vasco Castro
    • 1
  • Paulo Carvalho
    • 1
  • Solange Rito Lima
    • 1
  1. 1.Department of InformaticsUniversity of MinhoBragaPortugal

Personalised recommendations