Complex Activity Recognition Using Context Driven Activity Theory in Home Environments

  • Saguna
  • Arkady Zaslavsky
  • Dipanjan Chakraborty
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6869)

Abstract

This paper proposes a context driven activity theory (CDAT) and reasoning approach for recognition of concurrent and interleaved complex activities of daily living (ADL) which involves no training and minimal annotation during the setup phase. We develop and validate our CDAT using the novel complex activity recognition algorithm on two users for three weeks. The algorithm accuracy reaches 88.5% for concurrent and interleaved activities. The inferencing of complex activities is performed online and mapped onto situations in near real-time mode. The developed systems performance is analyzed and its behavior evaluated.

Keywords

Activity recognition context-awareness situations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Philipose, M., Fishkin, K.P., Perkowitz, M., Patterson, D.J., Fox, D., Kautz, H., Hahnel, D.: Inferring activities from interactions with objects. IEEE Pervasive Computing 3, 50–57 (2004)CrossRefGoogle Scholar
  2. 2.
    Choudhury, T., Consolvo, S., Harrison, B., Hightower, J., LaMarca, A., LeGrand, L., Rahimi, A., Rea, A., Bordello, G., Hemingway, B., Klasnja, P., Koscher, K., Landay, J.A., Lester, J., Wyatt, D., Haehnel, D.: The Mobile Sensing Platform: An Embedded Activity Recognition System. IEEE Pervasive Computing 7, 32–41 (2008)CrossRefGoogle Scholar
  3. 3.
    Ferscha, A., Mattern, F., Tapia, E., Intille, S., Larson, K.: Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Kaptelinin, V., Nardi, B., Macaulay, C.: Methods & tools: The activity checklist: a tool for representing the “space” of context. Interactions 6, 27–39 (1999)CrossRefGoogle Scholar
  5. 5.
    Yang, G.-Z., Lo, B., Thiemjarus, S.: Body Sensor Networks. Springer, London (2006)CrossRefGoogle Scholar
  6. 6.
    Albinali, F., Davies, N., Friday, A.: Structural Learning of Activities from Sparse Datasets. In: Fifth Annual IEEE International Conference on Pervasive Computing and Communications, pp. 221–228 (2007)Google Scholar
  7. 7.
    Davies, N., Siewiorek, D.P., Sukthankar, R.: Activity-Based Computing. IEEE Pervasive Computing 7, 20–21 (2008)CrossRefGoogle Scholar
  8. 8.
    Tao, G., Zhanqing, W., Xianping, T., Hung Keng, P., Jian, L.: epSICAR: An Emerging Patterns based approach to sequential, interleaved and Concurrent Activity Recognition. In: IEEE International Conference on Pervasive Computing and Communications, pp. 1–9 (2009)Google Scholar
  9. 9.
    Rashidi, P., Cook, D., Holder, L., Schmitter-Edgecombe, M.: Discovering Activities to Recognize and Track in a Smart Environment. IEEE Transactions on Knowledge and Data Engineering 23(4), 527–539 (2011)CrossRefGoogle Scholar
  10. 10.
    Dey, A.K.: Providing architectural support for building context-aware applications, PhD Thesis, Georgia Institute of Technology, p. 240 (2000)Google Scholar
  11. 11.
    Padovitz, A., Loke, S.W., Zaslavsky, A.: Towards a Theory of Context Spaces. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops (2004)Google Scholar
  12. 12.
    Bao, L., Intille, S.: Activity Recognition from User-Annotated Acceleration Data. In: Proc. Pervasive, Vienna, Austria, pp. 1–17 (2004)Google Scholar
  13. 13.
    Saguna, S., Zaslavsky, A., Chakraborty, D.: CrysP: Multi-Faceted Activity-Infused Presence in Emerging Social Networks. In: Balandin, S., Dunaytsev, R., Koucheryavy, Y. (eds.) ruSMART 2010. LNCS, vol. 6294, pp. 50–61. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Saguna
    • 1
    • 2
  • Arkady Zaslavsky
    • 1
    • 2
  • Dipanjan Chakraborty
    • 3
  1. 1.Monash UniversityMelbourneAustralia
  2. 2.Lulea University of TechnologyLuleaSweden
  3. 3.IBM Research, India Research LabNew DelhiIndia

Personalised recommendations