Multi-sensor Data Fusion within the Belief Functions Framework

Application to Smart Home Services
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6869)


In Smart Home, understanding the environment and what is going on is the basis of all adapted services. Unfortunately, inferring situations and activity recognition directly from raw data is way too complex to be applied. Firstly, we present a layered architecture we are building to process raw data into abstract situations and activities. Secondly, data fusion tools using the belief functions theory are introduced as a general framework to provide a first level of abstraction from raw data given by sensors to a more complex context model. Then a methodology to apply the model to our Smart Home within the belief functions framework, a first implementation and the encountered issues in modeling are discussed.


Smart Home Ubiquitous Computing Data fusion Belief Functions Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aldrich, F.: Smart homes: Past, present and future. In: Harper, R. (ed.) Inside the Smart Home, pp. 17–39. Springer, London (2003)CrossRefGoogle Scholar
  2. 2.
    Kim, E., Helal, S., Cook, D.: Human activity recognition and pattern discovery. IEEE Pervasive Computing 9, 48–53 (2010)CrossRefGoogle Scholar
  3. 3.
    Weiser, M.: Some computer science issues in ubiquitous computing. Commun. ACM 36, 75–84 (1993)CrossRefGoogle Scholar
  4. 4.
    Coutaz, J., Crowley, J.L., Dobson, S., Garlan, D.: Context is key. Commun. ACM 48, 49–53 (2005)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Shelby, Z., Bormann, C.: 6LoWPAN: The Wireless Embedded Internet. John Wiley & Sons, Ltd., Chichester (2009)CrossRefGoogle Scholar
  7. 7.
    Padovitz, A.: Context Management and Reasoning about Situations in Pervasive Computing. PhD thesis, Monash University, Australia (2006)Google Scholar
  8. 8.
    Goldman, R.P., Geib, C.W., Miller, C.A.: A New Model of Plan Recognition. Artificial Intelligence 64, 53–79 (1999)Google Scholar
  9. 9.
    Geib, C.W., Goldman, R.P.: A probabilistic plan recognition algorithm based on plan tree grammars. Artificial Intelligence 173(11), 1101–1132 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dominici, M., Fréjus, M., Guibourdenche, J., Pietropaoli, B., Weis, F.: Towards a system architecture for recognizing domestic activity by leveraging a naturalistic human activity model. In: IRISA Internal Report 1977 (2011)Google Scholar
  11. 11.
  12. 12.
    Smets, P.: Theories of uncertainty. In: Press, I. (ed.) Handbook of Fuzzy Computation. IOS Press, Amsterdam (1998)Google Scholar
  13. 13.
    Dubois, D., Prade, H.: La problmatique scientifique du traitement de l’information. Rapport de recherche 02-08R, IRIT, Université Paul Sabatier, Toulouse (March 2002)Google Scholar
  14. 14.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  15. 15.
    Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66(2), 191–234 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Yager, R.R.: On the dempster-shafer framework and new combination rules. Inf. Sci. 41, 93–137 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dubois, D., Prade, H.: Representation and combination of uncertainty with belief functions and possibility measures. Computational Intelligence 4, 244–264 (1988)CrossRefGoogle Scholar
  18. 18.
    Murphy, C.K.: Combining belief functions when evidence conflicts. Decision Support Systems 29, 1–9 (2000)CrossRefGoogle Scholar
  19. 19.
    Chen, L.-Z., Sh, W.-K.i., Deng, Y., Zhu, Z.-F.: A new fusion approach based on distance of evidences. Journal of Zhejiang University Science 6A(5), 476–482 (2005)CrossRefGoogle Scholar
  20. 20.
    Lefevre, E., Colot, O., Vannoorenberghe, P.: Belief function combination and conflict management. Information Fusion 3(2), 149–162 (2002)CrossRefGoogle Scholar
  21. 21.
    Denoeux, T.: Constructing belief functions from sample data using multinomial confidence regions. International Journal of Approximate Reasoning 42(3), 228–252 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Aregui, A., Denoeux, T.: Constructing consonant belief functions from sample data using confidence sets of pignistic probabilities. Int. J. Approx. Reasoning 49, 575–594 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    McKeever, S., Ye, J., Coyle, L., Dobson, S.: Using dempster-shafer theory of evidence for situation inference. In: Barnaghi, P., Moessner, K., Presser, M., Meissner, S. (eds.) EuroSSC 2009. LNCS, vol. 5741, pp. 149–162. Springer, Heidelberg (2009), CrossRefGoogle Scholar
  24. 24.
    Liao, J., Bi, Y., Nugent, C.: Activity recognition for smart homes using dempster-shafer theory of evidence based on a revised lattice structure. In: Proceedings of the 2010 Sixth International Conference on Intelligent Environments, IE 2010, pp. 46–51. IEEE Computer Society, Washington, DC (2010)CrossRefGoogle Scholar
  25. 25.
    Ricquebourg, V., Delafosse, M., Delahoche, L., Marhic, B., Jolly-Desodt, A.M., Menga, D.: Fault Detection by Combining Redundant Sensors: a Conflict Approach Within the TBM Framework. In: COGIS 2007, Cognitive systems with Interactive Sensors. Stanford University, Stanford (2007)Google Scholar
  26. 26.
    Smets, P.: Decision making in the tbm: the necessity of the pignistic transformation. Int. J. Approx. Reasoning 38(2), 133–147 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Smets, P.: The transferrable belief model for quantified belief representation. In: Smets, P. (ed.) Handbook of Defeasible Reasoning and Uncertainty Management Systems. Quantified Representation Uncertainty and Imprecision, vol. 1, pp. 267–301. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  28. 28.
    Martin, A., Osswald, C.: Generalized proportional conflict redistribution rule applied to sonar imagery and radar targets classification. CoRR abs/0806.2008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.INRIA, Rennes-Bretagne AtlantiqueRennes CedexFrance
  2. 2.IRISA, Université de Rennes 1Rennes CedexFrance

Personalised recommendations