Skip to main content

Mean Curvature Flow in Higher Codimension: Introduction and Survey

  • Conference paper
  • First Online:
Book cover Global Differential Geometry

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 17))

Abstract

In this text we outline the major techniques, concepts and results in mean curvature flow with a focus on higher codimension. In addition we include a few novel results and some material that cannot be found elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abresch, U., Langer, J., The normalized curve shortening flow and homothetic solutions, J. Differential Geom., 23, 1986, 2, 175–196,

    Google Scholar 

  2. Altschuler, St. J., Singularities of the curve shrinking flow for space curves, J. Differential Geom., 34, 1991, 2, 491–514,

    Google Scholar 

  3. Altschuler, St. J., Grayson, M. A., Shortening space curves and flow through singularities, J. Differential Geom., 35, 1992, 2, 283–298,

    Google Scholar 

  4. Ambrosio, L., Soner, H. M., A measure-theoretic approach to higher codimension mean curvature flows, Dedicated to Ennio De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25, 1997, 1-2, 27–49 (1998),

    Google Scholar 

  5. Andrews, B., Baker, C., Mean curvature flow of pinched submanifolds to spheres, J. Differential Geom., 85, 2010, 3, 357–395,

    Google Scholar 

  6. Anciaux, H., Construction of Lagrangian self-similar solutions to the mean curvature flow in n, Geom. Dedicata, 120, 2006, 37–48,

    Article  MATH  MathSciNet  Google Scholar 

  7. Angenent, S., On the formation of singularities in the curve shortening flow, J. Differential Geom., 33, 1991, 3, 601–633,

    Google Scholar 

  8. Angenent, S. B., Velázquez, J. J. L., Degenerate neckpinches in mean curvature flow, J. Reine Angew. Math., 482, 1997, 15–66,

    MATH  MathSciNet  Google Scholar 

  9. Behrndt, T., Generalized Lagrangian mean curvature flow in Kähler manifolds that are almost Einstein, arXiv:0812.4256, to appear in Proceedings of CDG 2009, Leibniz Universität Hannover, 2008,

    Google Scholar 

  10. Brakke, K. A., The motion of a surface by its mean curvature, Mathematical Notes, 20, Princeton University Press, Princeton, N.J., 1978, i+252, 0-691-08204-9,

    Google Scholar 

  11. Castro, I., Lerma, A. M., Hamiltonian stationary self-similar solutions for Lagrangian mean curvature flow in the complex Euclidean plane, Proc. Amer. Math. Soc., 138, 2010, 5, 1821–1832,

    Google Scholar 

  12. Chau, A., Chen, J., He, W., Entire self-similar solutions to Lagrangian Mean curvature flow, arXiv:0905.3869, 2009,

    Google Scholar 

  13. Chau, A., Chen, J., He, W., Lagrangian Mean Curvature flow for entire Lipschitz graphs, arXiv:0902.3300, 2009,

    Google Scholar 

  14. Chen, Y., Giga, Y., Goto, S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33, 1991, 3, 749–786,

    Google Scholar 

  15. Chen, X., Jian, H., Liu, Q., Convexity and symmetry of translating solitons in mean curvature flows, Chinese Ann. Math. Ser. B, 26, 2005, 3, 413–422,

    Google Scholar 

  16. Chen, J., Li, J., Mean curvature flow of surface in 4-manifolds, Adv. Math., 163, 2001, 2, 287–309,

    Google Scholar 

  17. Chen, J., Li, J., Singularity of mean curvature flow of Lagrangian submanifolds, Invent. Math., 156, 2004, 1, 25–51,

    Google Scholar 

  18. Chen, J., Li, J., Tian, G., Two-dimensional graphs moving by mean curvature flow, Acta Math. Sin. (Engl. Ser.), 18, 2002, 2, 209–224,

    Google Scholar 

  19. Chen, D., Ma, L., Curve shortening in a Riemannian manifold, Ann. Mat. Pura Appl. (4), 186, 2007, 4, 663–684,

    Google Scholar 

  20. Chen, J., Pang, C., Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs, English, with English and French summaries, C. R. Math. Acad. Sci. Paris, 347, 2009, 17-18, 1031–1034,

    Google Scholar 

  21. Chen, B.-L., Yin, L., Uniqueness and pseudolocality theorems of the mean curvature flow, Comm. Anal. Geom., 15, 2007, 3, 435–490,

    Google Scholar 

  22. Chou, K.-S., Zhu, X.-P., The curve shortening problem, Chapman & Hall/CRC, Boca Raton, FL, 2001, x+255, 1-58488-213-1,

    Google Scholar 

  23. Clutterbuck, J., Schnürer, O.C., Schulze, F., Stability of translating solutions to mean curvature flow, Calc. Var. Partial Differential Equations, 29, 2007, 3, 281–293,

    Google Scholar 

  24. Colding, T. H., Minicozzi, W. P., II, Sharp estimates for mean curvature flow of graphs, J. Reine Angew. Math., 574, 2004, 187–195,

    Article  MATH  MathSciNet  Google Scholar 

  25. Colding, T. H., Minicozzi, W. P., II, Generic mean curvature flow I; generic singularities, arXiv:0908.3788, 2009,

    Google Scholar 

  26. Ecker, K., Estimates for evolutionary surfaces of prescribed mean curvature, Math. Z., 180, 1982, 2, 179–192,

    Google Scholar 

  27. Ecker, K., A local monotonicity formula for mean curvature flow, Ann. of Math. (2), 154, 2001, 2, 503–525,

    Google Scholar 

  28. Ecker, K., Regularity theory for mean curvature flow, Progress in Nonlinear Differential Equations and their Applications, 57, Birkhäuser Boston Inc., Boston, MA, 2004, xiv+165, 0-8176-3243-3,

    Google Scholar 

  29. Ecker, K., Huisken, G., Mean curvature evolution of entire graphs, Ann. of Math. (2), 130, 1989, 3, 453–471,

    Google Scholar 

  30. Ecker, K., Huisken, G., Interior estimates for hypersurfaces moving by mean curvature, Invent. Math., 105, 1991, 3, 547–569,

    Google Scholar 

  31. Ecker, K., Knopf, D., Ni, L., Topping, P., Local monotonicity and mean value formulas for evolving Riemannian manifolds, J. Reine Angew. Math., 616, 2008, 89–130,

    Article  MATH  MathSciNet  Google Scholar 

  32. Enders, J., Müller, R., Topping, P., On Type I Singularities in Ricci flow, arXiv:1005.1624, 2010,

    Google Scholar 

  33. Evans, L. C., Spruck, J., Motion of level sets by mean curvature. I, J. Differential Geom., 33, 1991, 3, 635–681,

    Google Scholar 

  34. Gage, M. E., Curve shortening makes convex curves circular, Invent. Math., 76, 1984, 2, 357–364,

    Google Scholar 

  35. Gage, M., Hamilton, R. S., The heat equation shrinking convex plane curves, J. Differential Geom., 23, 1986, 1, 69–96,

    Google Scholar 

  36. Gerhardt, C., Evolutionary surfaces of prescribed mean curvature, J. Differential Equations, 36, 1980, 1, 139–172,

    Google Scholar 

  37. Grayson, M. A., The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26, 1987, 2, 285–314,

    Google Scholar 

  38. Grayson, M. A., Shortening embedded curves, Ann. of Math. (2), 129, 1989, 1, 71–111,

    Google Scholar 

  39. Groh, K., Schwarz, M., Smoczyk, K., Zehmisch, K., Mean curvature flow of monotone Lagrangian submanifolds, Math. Z., 257, 2007, 2, 295–327,

    Google Scholar 

  40. Gromov, M., Pseudoholomorphic curves in symplectic manifolds, Invent. Math., 82, 1985, 2, 307–347,

    Google Scholar 

  41. Hamilton, R. S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.), 7, 1982, 1, 65–222,

    Google Scholar 

  42. Hamilton, R. S., Three-manifolds with positive Ricci curvature, J. Differential Geom., 17, 1982, 2, 255–306,

    Google Scholar 

  43. Hamilton, R. S., Four-manifolds with positive curvature operator, J. Differential Geom., 24, 1986, 2, 153–179,

    Google Scholar 

  44. Hamilton, R. S., Monotonicity formulas for parabolic flows on manifolds, Comm. Anal. Geom., 1, 1993, 1, 127–137,

    Google Scholar 

  45. Hamilton, R. S., The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II, Cambridge, MA, 1993,, Int. Press, Cambridge, MA,, 1995, 7–136,

    Google Scholar 

  46. Hamilton, R. S., Harnack estimate for the mean curvature flow, J. Differential Geom., 41, 1995, 1, 215–226,

    Google Scholar 

  47. Han, X., Li, J., Translating solitons to symplectic and Lagrangian mean curvature flows, Internat. J. Math., 20, 2009, 4, 443–458,

    Google Scholar 

  48. Huisken, G., Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20, 1984, 1, 237–266,

    Google Scholar 

  49. Huisken, G., Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math., 84, 1986, 3, 463–480,

    Google Scholar 

  50. Huisken, G., Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom., 31, 1990, 1, 285–299,

    Google Scholar 

  51. Huisken, G., Local and global behaviour of hypersurfaces moving by mean curvature, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990),, Proc. Sympos. Pure Math., 54, Amer. Math. Soc., Providence, RI,, 1993, 175–191,

    Google Scholar 

  52. Huisken, G., Sinestrari, C., Mean curvature flow singularities for mean convex surfaces, Calc. Var. Partial Differential Equations, 8, 1999, 1, 1–14,

    Google Scholar 

  53. Huisken, G., Sinestrari, C., Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math., 183, 1999, 1, 45–70,

    Google Scholar 

  54. Huisken, G., Sinestrari, C., Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math., 175, 2009, 1, 137–221,

    Google Scholar 

  55. Ilmanen, T., Generalized flow of sets by mean curvature on a manifold, Indiana Univ. Math. J., 41, 1992, 3, 671–705,

    Google Scholar 

  56. Joyce, D., Lee, Y.-I., Tsui, M.-P., Self-similar solutions and translating solitons for Lagrangian mean curvature flow, J. Differential Geom., 84, 2010, 1, 127–161,

    Google Scholar 

  57. Krylov, N. V., Nonlinear elliptic and parabolic equations of the second order, Mathematics and its Applications (Soviet Series), 7, D. Reidel Publishing Co., Dordrecht, 1987, xiv+462, 90-277-2289-7,

    Google Scholar 

  58. Le, N. Q., Sesum, N., The mean curvature at the first singular time of the mean curvature flow, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 2010, 6, 1441–1459,

    Google Scholar 

  59. Le, N. Q., Sesum, N., Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers, arXiv:1011.5245v1, 2010,

    Google Scholar 

  60. Li, J., Li, Y., Mean curvature flow of graphs in Σ 1 ×Σ 2, J. Partial Differential Equations, 16, 2003, 3, 255–265,

    Google Scholar 

  61. Liu, K., Xu, H., Ye, F., Zhao, E., The extension and convergence of mean curvature flow in higher codimension, arXiv:1104.0971v1, 2011,

    Google Scholar 

  62. Medos, I., Wang, M.-T., Deforming symplectomorphisms of complex projective spaces by the mean curvature flow, Preprint, 2009,

    Google Scholar 

  63. Mullins, W. W., Two-dimensional motion of idealized grain boundaries, J. Appl. Phys., 27, 1956, 900–904,

    Article  MathSciNet  Google Scholar 

  64. Neves, A., Singularities of Lagrangian mean curvature flow: zero-Maslov class case, Invent. Math., 168, 2007, 3, 449–484,

    Google Scholar 

  65. Neves, A., Singularities of Lagrangian mean curvature flow: monotone case, Math. Res. Lett., 17, 2010, 1, 109–126,

    Google Scholar 

  66. Perelman, G., The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159, 2002,

    Google Scholar 

  67. Perelman, G., Ricci flow with surgery on three-manifolds, arXiv:math/0303109, 2003,

    Google Scholar 

  68. Perelman, G., Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv:math/0307245, 2003,

    Google Scholar 

  69. Ros, A., Urbano, F., Lagrangian submanifolds of C n with conformal Maslov form and the Whitney sphere, J. Math. Soc. Japan, 50, 1998, 1, 203–226,

    Google Scholar 

  70. Schoen, R., Wolfson, J., Minimizing area among Lagrangian surfaces: the mapping problem, J. Differential Geom., 58, 2001, 1, 1–86,

    Google Scholar 

  71. Schoen, R., Wolfson, J., Mean curvature flow and Lagrangian embeddings, Preprint, 2003,

    Google Scholar 

  72. Smoczyk, K., A canonical way to deform a Lagrangian submanifold, arXiv:dg-ga/9605005, 1996,

    Google Scholar 

  73. Smoczyk, K., Harnack inequality for the Lagrangian mean curvature flow, Calc. Var. Partial Differential Equations, 8, 1999, 3, 247–258,

    Google Scholar 

  74. Smoczyk, K., The Lagrangian mean curvature flow (Der Lagrangesche mittlere Krümmungsfluß, Leipzig: Univ. Leipzig (Habil.), 102 S., 2000,

    Google Scholar 

  75. Smoczyk, K., Angle theorems for the Lagrangian mean curvature flow, Math. Z., 240, 2002, 4, 849–883,

    Google Scholar 

  76. Smoczyk, K., Longtime existence of the Lagrangian mean curvature flow, Calc. Var. Partial Differential Equations, 20, 2004, 1, 25–46,

    Google Scholar 

  77. Smoczyk, K., Self-shrinkers of the mean curvature flow in arbitrary codimension, Int. Math. Res. Not., 2005, 48, 2983–3004,

    Article  MathSciNet  Google Scholar 

  78. Smoczyk, K., Wang, M.-T., Mean curvature flows of Lagrangians submanifolds with convex potentials, J. Differential Geom., 62, 2002, 2, 243–257,

    Google Scholar 

  79. Smoczyk, K., Wang, M.-T., Generalized Lagrangian mean curvature flows in symplectic manifolds, Asian J. Math., 15, 2011, 1, 129–140,

    Google Scholar 

  80. Stavrou, N., Selfsimilar solutions to the mean curvature flow, J. Reine Angew. Math., 499, 1998, 189–198,

    Article  MATH  MathSciNet  Google Scholar 

  81. Stone, A., A density function and the structure of singularities of the mean curvature flow, Calc. Var. Partial Differential Equations, 2, 1994, 4, 443–480,

    Google Scholar 

  82. Temam, R., Applications de l’analyse convexe au calcul des variations, French, Nonlinear operators and the calculus of variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975),, Springer, Berlin,, 1976, 208–237. Lecture Notes in Math., Vol. 543,

    Google Scholar 

  83. Thomas, R. P., Yau, S.-T., Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom., 10, 2002, 5, 1075–1113,

    Google Scholar 

  84. Tsui, M.-P., Wang, M.-T., Mean curvature flows and isotopy of maps between spheres, Comm. Pure Appl. Math., 57, 2004, 8, 1110–1126,

    Google Scholar 

  85. Wang, M.-T., Mean curvature flow of surfaces in Einstein four-manifolds, J. Differential Geom., 57, 2001, 2, 301–338,

    Google Scholar 

  86. Wang, M.-T., Deforming area preserving diffeomorphism of surfaces by mean curvature flow, Math. Res. Lett., 8, 2001, 5-6, 651–661,

    Google Scholar 

  87. Wang, M.-T., Long time existence and convergence of graphic mean curvature flow in arbitrary codimension, Invent. Math., 148, 2002, 3, 525–543,

    Google Scholar 

  88. Wang, M.-T., Gauss maps of the mean curvature flow, Math. Res. Lett., 10, 2003, 2-3, 287–299,

    Google Scholar 

  89. Wang, M.-T., The mean curvature flow smoothes Lipschitz submanifolds, Comm. Anal. Geom., 12, 2004, 3, 581–599,

    Google Scholar 

  90. Wang, M.-T., Subsets of Grassmannians preserved by mean curvature flows, Comm. Anal. Geom., 13, 2005, 5, 981–998,

    Google Scholar 

  91. Wang, M.-T., A convergence result of the Lagrangian mean curvature flow, Third International Congress of Chinese Mathematicians. Part 1, 2,, AMS/IP Stud. Adv. Math., 42, pt. 1, 2, Amer. Math. Soc., Providence, RI,, 2008, 291–295,

    Google Scholar 

  92. Wang, M.-T., Lectures on mean curvature flows in higher codimensions, Handbook of geometric analysis. No. 1,, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA,, 2008, 525–543,

    Google Scholar 

  93. White, B., A local regularity theorem for mean curvature flow, Ann. of Math. (2), 161, 2005, 3, 1487–1519,

    Google Scholar 

  94. White, B., Currents and flat chains associated to varifolds, with an application to mean curvature flow, Duke Math. J., 148, 2009, 1, 41–62,

    Google Scholar 

  95. Xin, Y., Mean curvature flow with convex Gauss image, Chin. Ann. Math. Ser. B, 29, 2008, 2, 121–134,

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Smoczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smoczyk, K. (2012). Mean Curvature Flow in Higher Codimension: Introduction and Survey. In: Bär, C., Lohkamp, J., Schwarz, M. (eds) Global Differential Geometry. Springer Proceedings in Mathematics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22842-1_9

Download citation

Publish with us

Policies and ethics