Abstract
In this text we outline the major techniques, concepts and results in mean curvature flow with a focus on higher codimension. In addition we include a few novel results and some material that cannot be found elsewhere.
Keywords
- Riemannian Manifold
- Curvature Flow
- Fundamental Form
- Ahler Manifold
- Curvature Vector
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Abresch, U., Langer, J., The normalized curve shortening flow and homothetic solutions, J. Differential Geom., 23, 1986, 2, 175–196,
Altschuler, St. J., Singularities of the curve shrinking flow for space curves, J. Differential Geom., 34, 1991, 2, 491–514,
Altschuler, St. J., Grayson, M. A., Shortening space curves and flow through singularities, J. Differential Geom., 35, 1992, 2, 283–298,
Ambrosio, L., Soner, H. M., A measure-theoretic approach to higher codimension mean curvature flows, Dedicated to Ennio De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25, 1997, 1-2, 27–49 (1998),
Andrews, B., Baker, C., Mean curvature flow of pinched submanifolds to spheres, J. Differential Geom., 85, 2010, 3, 357–395,
Anciaux, H., Construction of Lagrangian self-similar solutions to the mean curvature flow in ℂ n, Geom. Dedicata, 120, 2006, 37–48,
Angenent, S., On the formation of singularities in the curve shortening flow, J. Differential Geom., 33, 1991, 3, 601–633,
Angenent, S. B., Velázquez, J. J. L., Degenerate neckpinches in mean curvature flow, J. Reine Angew. Math., 482, 1997, 15–66,
Behrndt, T., Generalized Lagrangian mean curvature flow in Kähler manifolds that are almost Einstein, arXiv:0812.4256, to appear in Proceedings of CDG 2009, Leibniz Universität Hannover, 2008,
Brakke, K. A., The motion of a surface by its mean curvature, Mathematical Notes, 20, Princeton University Press, Princeton, N.J., 1978, i+252, 0-691-08204-9,
Castro, I., Lerma, A. M., Hamiltonian stationary self-similar solutions for Lagrangian mean curvature flow in the complex Euclidean plane, Proc. Amer. Math. Soc., 138, 2010, 5, 1821–1832,
Chau, A., Chen, J., He, W., Entire self-similar solutions to Lagrangian Mean curvature flow, arXiv:0905.3869, 2009,
Chau, A., Chen, J., He, W., Lagrangian Mean Curvature flow for entire Lipschitz graphs, arXiv:0902.3300, 2009,
Chen, Y., Giga, Y., Goto, S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom., 33, 1991, 3, 749–786,
Chen, X., Jian, H., Liu, Q., Convexity and symmetry of translating solitons in mean curvature flows, Chinese Ann. Math. Ser. B, 26, 2005, 3, 413–422,
Chen, J., Li, J., Mean curvature flow of surface in 4-manifolds, Adv. Math., 163, 2001, 2, 287–309,
Chen, J., Li, J., Singularity of mean curvature flow of Lagrangian submanifolds, Invent. Math., 156, 2004, 1, 25–51,
Chen, J., Li, J., Tian, G., Two-dimensional graphs moving by mean curvature flow, Acta Math. Sin. (Engl. Ser.), 18, 2002, 2, 209–224,
Chen, D., Ma, L., Curve shortening in a Riemannian manifold, Ann. Mat. Pura Appl. (4), 186, 2007, 4, 663–684,
Chen, J., Pang, C., Uniqueness of unbounded solutions of the Lagrangian mean curvature flow equation for graphs, English, with English and French summaries, C. R. Math. Acad. Sci. Paris, 347, 2009, 17-18, 1031–1034,
Chen, B.-L., Yin, L., Uniqueness and pseudolocality theorems of the mean curvature flow, Comm. Anal. Geom., 15, 2007, 3, 435–490,
Chou, K.-S., Zhu, X.-P., The curve shortening problem, Chapman & Hall/CRC, Boca Raton, FL, 2001, x+255, 1-58488-213-1,
Clutterbuck, J., Schnürer, O.C., Schulze, F., Stability of translating solutions to mean curvature flow, Calc. Var. Partial Differential Equations, 29, 2007, 3, 281–293,
Colding, T. H., Minicozzi, W. P., II, Sharp estimates for mean curvature flow of graphs, J. Reine Angew. Math., 574, 2004, 187–195,
Colding, T. H., Minicozzi, W. P., II, Generic mean curvature flow I; generic singularities, arXiv:0908.3788, 2009,
Ecker, K., Estimates for evolutionary surfaces of prescribed mean curvature, Math. Z., 180, 1982, 2, 179–192,
Ecker, K., A local monotonicity formula for mean curvature flow, Ann. of Math. (2), 154, 2001, 2, 503–525,
Ecker, K., Regularity theory for mean curvature flow, Progress in Nonlinear Differential Equations and their Applications, 57, Birkhäuser Boston Inc., Boston, MA, 2004, xiv+165, 0-8176-3243-3,
Ecker, K., Huisken, G., Mean curvature evolution of entire graphs, Ann. of Math. (2), 130, 1989, 3, 453–471,
Ecker, K., Huisken, G., Interior estimates for hypersurfaces moving by mean curvature, Invent. Math., 105, 1991, 3, 547–569,
Ecker, K., Knopf, D., Ni, L., Topping, P., Local monotonicity and mean value formulas for evolving Riemannian manifolds, J. Reine Angew. Math., 616, 2008, 89–130,
Enders, J., Müller, R., Topping, P., On Type I Singularities in Ricci flow, arXiv:1005.1624, 2010,
Evans, L. C., Spruck, J., Motion of level sets by mean curvature. I, J. Differential Geom., 33, 1991, 3, 635–681,
Gage, M. E., Curve shortening makes convex curves circular, Invent. Math., 76, 1984, 2, 357–364,
Gage, M., Hamilton, R. S., The heat equation shrinking convex plane curves, J. Differential Geom., 23, 1986, 1, 69–96,
Gerhardt, C., Evolutionary surfaces of prescribed mean curvature, J. Differential Equations, 36, 1980, 1, 139–172,
Grayson, M. A., The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26, 1987, 2, 285–314,
Grayson, M. A., Shortening embedded curves, Ann. of Math. (2), 129, 1989, 1, 71–111,
Groh, K., Schwarz, M., Smoczyk, K., Zehmisch, K., Mean curvature flow of monotone Lagrangian submanifolds, Math. Z., 257, 2007, 2, 295–327,
Gromov, M., Pseudoholomorphic curves in symplectic manifolds, Invent. Math., 82, 1985, 2, 307–347,
Hamilton, R. S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.), 7, 1982, 1, 65–222,
Hamilton, R. S., Three-manifolds with positive Ricci curvature, J. Differential Geom., 17, 1982, 2, 255–306,
Hamilton, R. S., Four-manifolds with positive curvature operator, J. Differential Geom., 24, 1986, 2, 153–179,
Hamilton, R. S., Monotonicity formulas for parabolic flows on manifolds, Comm. Anal. Geom., 1, 1993, 1, 127–137,
Hamilton, R. S., The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II, Cambridge, MA, 1993,, Int. Press, Cambridge, MA,, 1995, 7–136,
Hamilton, R. S., Harnack estimate for the mean curvature flow, J. Differential Geom., 41, 1995, 1, 215–226,
Han, X., Li, J., Translating solitons to symplectic and Lagrangian mean curvature flows, Internat. J. Math., 20, 2009, 4, 443–458,
Huisken, G., Flow by mean curvature of convex surfaces into spheres, J. Differential Geom., 20, 1984, 1, 237–266,
Huisken, G., Contracting convex hypersurfaces in Riemannian manifolds by their mean curvature, Invent. Math., 84, 1986, 3, 463–480,
Huisken, G., Asymptotic behavior for singularities of the mean curvature flow, J. Differential Geom., 31, 1990, 1, 285–299,
Huisken, G., Local and global behaviour of hypersurfaces moving by mean curvature, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990),, Proc. Sympos. Pure Math., 54, Amer. Math. Soc., Providence, RI,, 1993, 175–191,
Huisken, G., Sinestrari, C., Mean curvature flow singularities for mean convex surfaces, Calc. Var. Partial Differential Equations, 8, 1999, 1, 1–14,
Huisken, G., Sinestrari, C., Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math., 183, 1999, 1, 45–70,
Huisken, G., Sinestrari, C., Mean curvature flow with surgeries of two-convex hypersurfaces, Invent. Math., 175, 2009, 1, 137–221,
Ilmanen, T., Generalized flow of sets by mean curvature on a manifold, Indiana Univ. Math. J., 41, 1992, 3, 671–705,
Joyce, D., Lee, Y.-I., Tsui, M.-P., Self-similar solutions and translating solitons for Lagrangian mean curvature flow, J. Differential Geom., 84, 2010, 1, 127–161,
Krylov, N. V., Nonlinear elliptic and parabolic equations of the second order, Mathematics and its Applications (Soviet Series), 7, D. Reidel Publishing Co., Dordrecht, 1987, xiv+462, 90-277-2289-7,
Le, N. Q., Sesum, N., The mean curvature at the first singular time of the mean curvature flow, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 2010, 6, 1441–1459,
Le, N. Q., Sesum, N., Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers, arXiv:1011.5245v1, 2010,
Li, J., Li, Y., Mean curvature flow of graphs in Σ 1 ×Σ 2, J. Partial Differential Equations, 16, 2003, 3, 255–265,
Liu, K., Xu, H., Ye, F., Zhao, E., The extension and convergence of mean curvature flow in higher codimension, arXiv:1104.0971v1, 2011,
Medos, I., Wang, M.-T., Deforming symplectomorphisms of complex projective spaces by the mean curvature flow, Preprint, 2009,
Mullins, W. W., Two-dimensional motion of idealized grain boundaries, J. Appl. Phys., 27, 1956, 900–904,
Neves, A., Singularities of Lagrangian mean curvature flow: zero-Maslov class case, Invent. Math., 168, 2007, 3, 449–484,
Neves, A., Singularities of Lagrangian mean curvature flow: monotone case, Math. Res. Lett., 17, 2010, 1, 109–126,
Perelman, G., The entropy formula for the Ricci flow and its geometric applications, arXiv:math/0211159, 2002,
Perelman, G., Ricci flow with surgery on three-manifolds, arXiv:math/0303109, 2003,
Perelman, G., Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, arXiv:math/0307245, 2003,
Ros, A., Urbano, F., Lagrangian submanifolds of C n with conformal Maslov form and the Whitney sphere, J. Math. Soc. Japan, 50, 1998, 1, 203–226,
Schoen, R., Wolfson, J., Minimizing area among Lagrangian surfaces: the mapping problem, J. Differential Geom., 58, 2001, 1, 1–86,
Schoen, R., Wolfson, J., Mean curvature flow and Lagrangian embeddings, Preprint, 2003,
Smoczyk, K., A canonical way to deform a Lagrangian submanifold, arXiv:dg-ga/9605005, 1996,
Smoczyk, K., Harnack inequality for the Lagrangian mean curvature flow, Calc. Var. Partial Differential Equations, 8, 1999, 3, 247–258,
Smoczyk, K., The Lagrangian mean curvature flow (Der Lagrangesche mittlere Krümmungsfluß, Leipzig: Univ. Leipzig (Habil.), 102 S., 2000,
Smoczyk, K., Angle theorems for the Lagrangian mean curvature flow, Math. Z., 240, 2002, 4, 849–883,
Smoczyk, K., Longtime existence of the Lagrangian mean curvature flow, Calc. Var. Partial Differential Equations, 20, 2004, 1, 25–46,
Smoczyk, K., Self-shrinkers of the mean curvature flow in arbitrary codimension, Int. Math. Res. Not., 2005, 48, 2983–3004,
Smoczyk, K., Wang, M.-T., Mean curvature flows of Lagrangians submanifolds with convex potentials, J. Differential Geom., 62, 2002, 2, 243–257,
Smoczyk, K., Wang, M.-T., Generalized Lagrangian mean curvature flows in symplectic manifolds, Asian J. Math., 15, 2011, 1, 129–140,
Stavrou, N., Selfsimilar solutions to the mean curvature flow, J. Reine Angew. Math., 499, 1998, 189–198,
Stone, A., A density function and the structure of singularities of the mean curvature flow, Calc. Var. Partial Differential Equations, 2, 1994, 4, 443–480,
Temam, R., Applications de l’analyse convexe au calcul des variations, French, Nonlinear operators and the calculus of variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975),, Springer, Berlin,, 1976, 208–237. Lecture Notes in Math., Vol. 543,
Thomas, R. P., Yau, S.-T., Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom., 10, 2002, 5, 1075–1113,
Tsui, M.-P., Wang, M.-T., Mean curvature flows and isotopy of maps between spheres, Comm. Pure Appl. Math., 57, 2004, 8, 1110–1126,
Wang, M.-T., Mean curvature flow of surfaces in Einstein four-manifolds, J. Differential Geom., 57, 2001, 2, 301–338,
Wang, M.-T., Deforming area preserving diffeomorphism of surfaces by mean curvature flow, Math. Res. Lett., 8, 2001, 5-6, 651–661,
Wang, M.-T., Long time existence and convergence of graphic mean curvature flow in arbitrary codimension, Invent. Math., 148, 2002, 3, 525–543,
Wang, M.-T., Gauss maps of the mean curvature flow, Math. Res. Lett., 10, 2003, 2-3, 287–299,
Wang, M.-T., The mean curvature flow smoothes Lipschitz submanifolds, Comm. Anal. Geom., 12, 2004, 3, 581–599,
Wang, M.-T., Subsets of Grassmannians preserved by mean curvature flows, Comm. Anal. Geom., 13, 2005, 5, 981–998,
Wang, M.-T., A convergence result of the Lagrangian mean curvature flow, Third International Congress of Chinese Mathematicians. Part 1, 2,, AMS/IP Stud. Adv. Math., 42, pt. 1, 2, Amer. Math. Soc., Providence, RI,, 2008, 291–295,
Wang, M.-T., Lectures on mean curvature flows in higher codimensions, Handbook of geometric analysis. No. 1,, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville, MA,, 2008, 525–543,
White, B., A local regularity theorem for mean curvature flow, Ann. of Math. (2), 161, 2005, 3, 1487–1519,
White, B., Currents and flat chains associated to varifolds, with an application to mean curvature flow, Duke Math. J., 148, 2009, 1, 41–62,
Xin, Y., Mean curvature flow with convex Gauss image, Chin. Ann. Math. Ser. B, 29, 2008, 2, 121–134,
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Smoczyk, K. (2012). Mean Curvature Flow in Higher Codimension: Introduction and Survey. In: Bär, C., Lohkamp, J., Schwarz, M. (eds) Global Differential Geometry. Springer Proceedings in Mathematics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22842-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-642-22842-1_9
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22841-4
Online ISBN: 978-3-642-22842-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)