Skip to main content

History and Recent Developments in Robotic Sailing

  • Conference paper


Robotic sailing boats represent a rapidly emerging technology for various tasks on lakes and oceans. In this paper we give an overview about the main building blocks of a robotic sailing boat for controlling the rudder and the sails. History of robotic sailing includes developments in mechanical, electronic, and intelligent self-steering systems as well as automatic sail control. Furthermore advantages and disadvantages of rigid wing sails in comparison to traditional fabric sails are illuminated. Early examples of robotic sailing boats and recent developments, stimulated by robotic sailing competitions such as Microtransat Challenge, SailBot and World Robotic Sailing Championships are presented. We conclude with a brief outlook on potential applications in the field of robotic sailing.


  • Autonomous Underwater Vehicle
  • Sailing Robot
  • Autonomous Sailing
  • Ocean Observation
  • Unmanned Surface Vehicle

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-22836-0_1
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-22836-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abril, J., Salom, J., Calvo, O.: Fuzzy control of a sailboat. International Journal of Approximate Reasoning 16(3-4), 359–375 (1997),

    MATH  CrossRef  Google Scholar 

  2. Adriaans, P.W.: From knowledge-based to skill-based systems: Sailing as a machine learning challenge. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 1–8. Springer, Heidelberg (2003),

    CrossRef  Google Scholar 

  3. Allensworth, T.: A short history of Sperry Marine (1999),

  4. von Alt, C.: Autonomous underwater vehicles. In: Autonomous Underwater Lagrangian Platforms and Sensors Workshop (2003),

  5. Alves, J., Ramos, T., Cruz, N.: A reconfigurable computing system for an autonomous sailboat. In: IRSC 2008 International Robotic Sailing Conference, pp. 13–20 (2008),

  6. Ammann, N., Hartmann, F., Jauer, P., Bruder, R., Schlaefer, A.: Design of a robotic sailboat for wrsc/sailbot. In: International Robotic Sailing Conference 2010, pp. 40–42 (2010)

    Google Scholar 

  7. BalancedRig: Balancedrig website (2009), (accessed April 16, 2009)

  8. Benatar, N., Qadir, O., Owen, J., Baxter, P., Neal, M.: P-Controller as an Expert System for Manoeuvring Rudderless Sail Boats. In: Proceedings of UKCI (2009),

  9. Bennett, S.: A history of control engineering, 1800-1930. Inspec/Iee (1986)

    Google Scholar 

  10. Bertram, V.: Unmanned surface vehicles–a survey. Skibsteknisk Selskab, Copenhagen, Denmark (2008),

  11. Blidberg, D.: The development of autonomous underwater vehicles (auvs); a brief summary. In: IEEE ICRA, vol. 4, Citeseer (2001), doi= 1739&rep=rep1&type=pdf

  12. Bohnenberger, J.G.F.: Beschreibung einer Maschine zur Erläuterung der Gesetze der Umdrehung der Erde um ihre Axe, und der Veränderung der Lage der letzteren. Tübinger Blätter für Naturwissenschaften und Arzneikunde 3, 72–83 (1817),

  13. Bowditch, N.: The American Practical Navigator. Paradise Cay Publications (2010),

  14. Briere, Y.: Iboat: An autonomous robot for long-term offshore operation. In: The 14th IEEE Mediterranean Electrotechnical Conference, MELECON 2008, pp. 323–329. IEEE, Los Alamitos (2008),

    CrossRef  Google Scholar 

  15. Briere, Y., Bastianelli, F., Gagneul, M., Cormerais, P.: Challenge Microtransat. In: CETSIS 2005, Nancy, France (2005),

  16. Bruder, R., Stender, B., Schlaefer, A.: Model sailboats as a testbed for artificial intelligence methods. In: Proceedings of the 2nd International Robotic Sailing Conference, pp. 37–42 (2009)

    Google Scholar 

  17. Burnie, M. (ed.): Participant Package – World Robotic Sailing Championship 2010 and International Robotic Sailing Conference 2010. Queen’s University, Kingston (2010)

    Google Scholar 

  18. Burns, R.: The use of artificial neural networks for the intelligent optimal control of surface ships. IEEE Journal of Oceanic Engineering 20(1), 65–72 (1995),

    CrossRef  Google Scholar 

  19. Caccia, M.: Autonomous Surface Craft: prototypes and basic research issues. In: 14th Mediterranean Conference on Control and Automation, MED 2006, pp. 1–6. IEEE, Los Alamitos (2006),

    Google Scholar 

  20. Cruz, N., Alves, J.: Ocean sampling and surveillance using autonomous sailboats. In: IRSC 2008 International Robotic Sailing Conference, p. 30 (2008),

  21. Elkaim, G.: System identification for precision control of a wingsailed GPS-guided catamaran. Ph.D. thesis, Standford University (2002)

    Google Scholar 

  22. Elkaim, G.: The Atlantis project: A GPS-guided wing-sailed autonomous catamaran. Navigation 53(4) (2006), doi= 9098&rep=rep1&type=pdf

  23. Elkaim, G., Boyce, L.C.O.: Experimental Aerodynamic Performance of a SelfTrimming Wing-Sail for Autonomous Surface Vehicles. In: Proc. Of the IFAC Conference on Control Applications in Marine Systems, IFAC CAMS. Citeseer (2007),

  24. Enab, Y.: Intelligent controller design for the ship steering problem. In: IEE Proceedings Control Theory and Applications, vol. 143(1), pp. 17–24. IET (1996),

  25. Giger, L., Wismer, S., Boehl, S., Büsser, G., Erckens, H., Weber, J., Moser, P., Schwizer, P., Pradalier, C., Siegwart, R.: Design and construction of the autonomous sailing vessel avalon. In: Proc. 2nd Int. Robotic Sailing Conf., pp. 17–22 (2009)

    Google Scholar 

  26. Layne, J., Passino, K.: Fuzzy model reference learning control for cargo ship steering. IEEE Control Systems Magazine 13(6), 23–34 (1993),

    CrossRef  Google Scholar 

  27. Loibner, D.: KLAR zur WENDE? klick. Yacht Revue 3 (1998),

  28. Manley, J.: Unmanned surface vehicles, 15 years of development. In: OCEANS 2008, pp. 1–4. IEEE, Los Alamitos (2008),

    CrossRef  Google Scholar 

  29. Microtransat: Official microtransat web site (2011), (accessed on 27 April 2011)

  30. Miller, P., Beal, B., Capron, C., Gawboy, R., Mallory, P., Ness, C., Petrosik, R.: Increasing performance and added capabilities of usna sail-powered autonomous surface vessels (asv). In: International Robotic Sailing Conference (2010),

  31. Miller, P., Brooks, O., Hamlet, M.: Development of the usna sailbots (asv). In: International Robotic Sailing Conference (2009),

  32. Minorsky, N.: Directional stability of automatic steered bodies. Journal of American Society of Naval Engineers 34(2), 280–309 (1922)

    CrossRef  Google Scholar 

  33. Multirig: Multirig website (2009), (accessed April 16, 2009)

  34. Neal, M.: A hardware proof of concept of a sailing robot for ocean observation. IEEE Journal of Oceanic Engineering 31(2), 462–469 (2006), doi= 1486&rep=rep1&type=pdf

    CrossRef  Google Scholar 

  35. Neal, M., Sauze, C., Thomas, B., Alves, J.: Technologies for Autonomous Sailing: Wings and Wind Sensors. In: Proceedings of the 2nd IRSC, Matosinhos, Portugal, July 6-12, pp. 23–30 (2009),

  36. Polkinghorne, M., Roberts, G., Burns, R., Winwood, D.: The implementation of fixed rulebase fuzzy logic to the control of small surface ships. Control Engineering Practice 3(3), 321–328 (1995),

    CrossRef  Google Scholar 

  37. Roberts, G.: Trends in marine control systems. Annual reviews in control 32(2), 263–269 (2008),

    CrossRef  Google Scholar 

  38. RoboCup: Official robocup website: Objective (2011), (accessed May 1, 2011)

  39. Rynne, P., von Ellenrieder, K.: Unmanned autonomous sailing: Current status and future role in sustained ocean observations. Marine Technology Society Journal 43(1), 21–30 (2009)

    CrossRef  Google Scholar 

  40. Sauzé, C., Neal, M.: Design considerations for sailing robots performing long term autonomous oceanography. In: Proceedings of The International Robotic Sailing Conference, May 23 -24, pp. 21–29 (2008),

  41. Scanmar: Classification of Vane Gears by Course Correcting System (2011), (accessed on April 27, 2011)

  42. Schieben, E.W.: Skamp – an amazing unmanned sailboat! Ocean Industry, pp. 38–43 (1969)

    Google Scholar 

  43. Shukla, P., Ghosh, K.: Revival of the Modern Wing Sails for the Propulsion of Commercial Ships. International Journal of Civil and Environmental Engineering, 75–80 (2009),

  44. Sliwka, J., Reilhac, P., Leloup, R., Crepier, P., Malet, H., Sittaramane, P., Bars, F., Roncin, K., Aizier, B., Jaulin, L.: Autonomous robotic boat of ensieta. In: 2nd International Robotic Sailing Conference, Matosinhos, Portugal (2009),

  45. Smith, B.: Skamp – roboat boat with rigid sails patrols ocean beat. Popular Science 196(5), 70–72 (1970),

    Google Scholar 

  46. Sperry, E.: Automatic steering. Society of Naval Architects and Marine Engineers (1922)

    Google Scholar 

  47. Spiegel: Fliegender Schwarzwälder. Der Spiegel 22, 176–177 (1998),

  48. Stelzer, R., Jafarmadar, K.: Communication architecture for autonomous sailboats. In: Proceedings of International Robotic Sailing Conference, Matosinhos, Portugal, pp. 31–36 (2009),

  49. Stelzer, R., Pröll, T., John, R.: Fuzzy logic control system for autonomous sailboats. In: FUZZ-IEEE 2007, London, UK, pp. 97–102 (2007),

  50. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M., Hoffmann, G., et al.: Stanley: The robot that won the DARPA Grand Challenge. In: The 2005 DARPA Grand Challenge, pp. 1–43 (2007),

  51. Van Aartrijk, M., Tagliola, C., Adriaans, P.: AI on the Ocean: the RoboSail Project. In: ECAI, pp. 653–657. Citeseer (2002),

  52. Van Amerongen, J.: Adaptive steering of ships–A model reference approach. Automatica 20(1), 3–14 (1984),

    MATH  CrossRef  Google Scholar 

  53. Velagic, J., Vukic, Z., Omerdic, E.: Adaptive fuzzy ship autopilot for track-keeping. Control engineering practice 11(4), 433–443 (2003),

    CrossRef  Google Scholar 

  54. Worsley, P.: Self Trimming/Self Tending Wingsails (2011), (accessed on May 8, 2011)

  55. Yeh, E., Bin, J.: Fuzzy control for self-steering of a sailboat. In: Proceedings of Singapore International Conference on Intelligent Control and Instrumentation, SICICI 1992, vol. 2, pp. 1339–1344. IEEE, Los Alamitos (1992),

    CrossRef  Google Scholar 

  56. Zirilli, A., Tiano, A., Roberts, G., Sutton, R.: Fuzzy course-keeping autopilot for ships. In: 15th Triennial World Congress, Barcelona, Spain (2002),

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stelzer, R., Jafarmadar, K. (2011). History and Recent Developments in Robotic Sailing. In: Schlaefer, A., Blaurock, O. (eds) Robotic Sailing. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22835-3

  • Online ISBN: 978-3-642-22836-0

  • eBook Packages: EngineeringEngineering (R0)