Skip to main content

Algorithm for Discriminating Aggregate Gaze Points: Comparison with Salient Regions-Of-Interest

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 6468)

Abstract

A novel method for distinguishing classes of viewers from their aggregated eye movements is described. The probabilistic framework accumulates uniformly sampled gaze as Gaussian point spread functions (heatmaps), and measures the distance of unclassified scanpaths to a previously classified set (or sets). A similarity measure is then computed over the scanpath durations. The approach is used to compare human observers’s gaze over video to regions of interest (ROIs) automatically predicted by a computational saliency model. Results show consistent discrimination between human and artificial ROIs, regardless of either of two differing instructions given to human observers (free or tasked viewing).

Keywords

  • Video Sequence
  • Video Frame
  • Human Observer
  • Saliency Model
  • Dynamic Medium

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-22822-3_39
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-22822-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Land, M.F., Tatler, B.W.: Looking and Acting: Vision and Eye Movements in Natural Behavior. Oxford University Press, New York (2009)

    CrossRef  Google Scholar 

  2. Smith, T.J., Henderson, J.M.: Edit Blindness: The Relationship Between Attention and Global Change Blindness in Dynamic Scenes. Journal of Eye Movement Research 2, 1–17 (2008)

    Google Scholar 

  3. Franchak, J.M., Kretch, K.S., Soska, K.C., Babcock, J.S., Adolph, K.E.: Head-Mounted Eye-Tracking of Infants’ Natural Interactions: A New Method. In: ETRA 2010: Proceedings of the 2010 Symposium on Eye Tracking Research & Applications, pp. 21–27. ACM, New York (2010)

    Google Scholar 

  4. d’Ydewalle, G., Desmet, G., Van Rensbergen, J.: Film perception: The processing of film cuts. In: Underwood, G.D.M. (ed.) Eye guidance in reading and scene perception, pp. 357–367. Elsevier Science Ltd., Oxford (1998)

    CrossRef  Google Scholar 

  5. Grindinger, T., Duchowski, A.T., Sawyer, M.: Group-Wise Similarity and Classification of Aggregate Scanpaths. In: ETRA 2010: Proceedings of the 2010 Symposium on Eye Tracking Research & Applications, pp. 101–104. ACM, New York (2010)

    Google Scholar 

  6. Yarbus, A.L.: Eye Movements and Vision. Plenum Press, New York (1967)

    CrossRef  Google Scholar 

  7. Privitera, C.M., Stark, L.W.: Algorithms for Defining Visual Regions-of-Interest: Comparison with Eye Fixations. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 22, 970–982 (2000)

    CrossRef  Google Scholar 

  8. Jarodzka, H., Holmqvist, K., Nyström, M.: A Vector-Based, Multidimensional Scanpath Similarity Measure. In: ETRA 2010: Proceedings of the 2010 Symposium on Eye Tracking Research & Applications, pp. 211–218. ACM, New York (2010)

    Google Scholar 

  9. Duchowski, A.T., Driver, J., Jolaoso, S., Ramey, B.N., Tan, W., Robbins, A.: Scanpath Comparison Revisited. In: ETRA 2010: Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, pp. 219–226. ACM, New York (2010)

    Google Scholar 

  10. Pomplun, M., Ritter, H., Velichkovsky, B.: Disambiguating Complex Visual Information: Towards Communication of Personal Views of a Scene. Perception 25, 931–948 (1996)

    CrossRef  Google Scholar 

  11. Wooding, D.S.: Fixation Maps: Quantifying Eye-Movement Traces. In: ETRA 2002: Proceedings of the 2002 Symposium on Eye Tracking Research & Applications, pp. 31–36. ACM, New York (2002)

    Google Scholar 

  12. Hembrooke, H., Feusner, M., Gay, G.: Averaging Scan Patterns and What They Can Tell Us. In: ETRA 2006: Proceedings of the 2006 Symposium on Eye Tracking Research & Applications, p. 41. ACM, New York (2006)

    Google Scholar 

  13. Dempere-Marco, L., Hu, X.P., Ellis, S.M., Hansell, D.M., Yang, G.Z.: Analysis of Visual Search Patterns With EMD Metric in Normalized Anatomical Space. IEEE Transactions on Medical Imaging 25, 1011–1021 (2006)

    CrossRef  Google Scholar 

  14. Torstling, A.: The Mean Gaze Path: Information Reduction and Non-Intrusive Attention Detection for Eye Tracking. Master’s thesis, The Royal Institute of Technology, Stockholm, Sweden, Techreport XR-EE-SB 2007:008 (2007)

    Google Scholar 

  15. Airola, A., Pahikkala, T., Waegeman, W., De Baets, B., Salakoski, T.: A Comparison of AUC Estimators in Small-Sample Studies. In: Proceedings of the 3rd International workshop on Machine Learning in Systems Biology, pp. 15–23 (2009)

    Google Scholar 

  16. Paris, S., Durand, F.: A Fast Approximation of the Bilateral Filter using a Signal Processing Approach. Technical Report MIT-CSAIL-TR-2006-073, Massachusetts Institute of Technology (2006)

    Google Scholar 

  17. Itti, L., Koch, C., Niebur, E.: A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 20, 1254–1259 (1998)

    CrossRef  Google Scholar 

  18. Leigh, R.J., Zee, D.S.: The Neurology of Eye Movements, 2nd edn. Contemporary Neurology Series. F. A. Davis Company, Philadelphia (1991)

    Google Scholar 

  19. Grindinger, T.J.: Event-Driven Similarity and Classification of Scanpaths. PhD thesis, Clemson University, Clemson, SC (2010)

    Google Scholar 

  20. Peters, R.J., Itti, L.: Computational Mechanisms for Gaze Direction in Interactive Visual Environments. In: ETRA 2006: Proceedings of the 2006 Symposium on Eye Tracking Research & Applications, pp. 27–32. ACM, New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grindinger, T.J., Murali, V.N., Tetreault, S., Duchowski, A.T., Birchfield, S.T., Orero, P. (2011). Algorithm for Discriminating Aggregate Gaze Points: Comparison with Salient Regions-Of-Interest. In: Koch, R., Huang, F. (eds) Computer Vision – ACCV 2010 Workshops. ACCV 2010. Lecture Notes in Computer Science, vol 6468. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22822-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22822-3_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22821-6

  • Online ISBN: 978-3-642-22822-3

  • eBook Packages: Computer ScienceComputer Science (R0)