Abstract
Cryptographic protocols, such as protocols for secure function evaluation (SFE), have played a crucial role in the development of modern cryptography. The extensive theory of these protocols, however, deals almost exclusively with classical attackers. If we accept that quantum information processing is the most realistic model of physically feasible computation, then we must ask: what classical protocols remain secure against quantum attackers?
Our main contribution is showing the existence of classical two-party protocols for the secure evaluation of any polynomial-time function under reasonable computational assumptions (for example, it suffices that the learning with errors problem be hard for quantum polynomial time). Our result shows that the basic two-party feasibility picture from classical cryptography remains unchanged in a quantum world.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent composition via super-polynomial simulation. In: FOCS, pp. 543–552. IEEE, Los Alamitos (2005)
Beaver, D.: On deniability in quantum key exchange. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 352–367. Springer, Heidelberg (2002)
Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: STOC, pp. 503–513. ACM, New York (1990)
Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)
Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multiparty quantum computation with (only) a strict honest majority. In: FOCS, pp. 249–260. IEEE, Los Alamitos (2006)
Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: The universal composable security of quantum key distribution. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 386–406. Springer, Heidelberg (2005)
Ben-Or, M., Mayers, D.: General security definition and composability for quantum and classical protocols, arxiv:quant-ph/0409062v2 (September 2004)
Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical quantum oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 351–366. Springer, Heidelberg (1992)
Brassard, G., Crépeau, C.: Quantum bit commitment and coin tossing protocols. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 49–61. Springer, Heidelberg (1991)
Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1), 143–202 (2000)
Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145. IEEE, Los Alamitos (2001)
Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007)
Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503. ACM, New York (2002)
Crépeau, C., Dumais, P., Mayers, D., Salvail, L.: Computational collapse of quantum state with application to oblivious transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 374–393. Springer, Heidelberg (2004)
Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: STOC, pp. 643–652. ACM, New York (2002)
Crépeau, C., Gottesman, D., Smith, A.: Approximate quantum error-correcting codes and secret sharing schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 285–301. Springer, Heidelberg (2005)
Crépeau, C., Salvail, L., Simard, J.-R., Tapp Classical, A.: quantum strategies for two-prover bit commitments. In: Quantum Information Processing, QIP (2006), http://crypto.cs.mcgill.ca/~crepeau/PDF/CSST06.pdf
Damgård, I., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving the security of quantum protocols via commit-and-open. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 408–427. Springer, Heidelberg (2009), Full version at arXiv:0902.3918v4
Damgård, I., Fehr, S., Salvail, L., Schaffner, C.: Secure identification and qkd in the bounded-quantum-storage model. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 342–359. Springer, Heidelberg (2007)
Damgård, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded-quantum-storage model. SIAM J. Comput. 37(6), 1865–1890 (2008)
Damgård, I., Lunemann, C.: Quantum-secure coin-flipping and applications. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 52–69. Springer, Heidelberg (2009)
Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment from any quantum one-way permutation. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 300–315. Springer, Heidelberg (2000)
Fehr, S., Schaffner, C.: Composing quantum protocols in a classical environment. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 350–367. Springer, Heidelberg (2009)
Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: CRYPTO, pp. 526–544. Springer, Heidelberg(1990)
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC, pp. 218–229. ACM, New York (1987)
Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in np have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18, 186–208 (1989)
Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. J. ACM 54(1), 1–19 (2007)
Hallgren, S., Kolla, A., Sen, P., Zhang, S.: Making classical honest verifier zero knowledge protocols secure against quantum attacks. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 592–603. Springer, Heidelberg (2008)
Hofheinz, D., Unruh, D.: Simulatable security and polynomially bounded concurrent composability. In: Symposium on Security and Privacy, pp. 169–183. IEEE, Los Alamitos (2006)
Kol, G., Naor, M.: Games for exchanging information. In: STOC, pp. 423–432. ACM, New York (2008)
Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols and security under composition. SIAM J. Comput. 39(5), 2090–2112 (2010)
Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation. J. Cryptology 16(3), 143–184 (2003)
Lindell, Y.: General composition and universal composability in secure multiparty computation. J. Cryptology 22(3), 395–428 (2009)
Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)
Lunemann, C., Nielsen, J.B.: Fully simulatable quantum-secure coin-flipping and applications. In: Africacrypt (February 2011); arXiv:1102.0887
Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (2001)
Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003)
Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: STOC, pp. 242–251. ACM, New York (2004)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6) (2009); Preliminary version in STOC 2005
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)
Unruh, D.: Simulatable security for quantum protocols, arXiv:quant-ph/0409125v2 (2004)
Unruh, D.: Quantum proofs of knowledge, IACR ePrint 2010/212 (April 2010)
Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg (2010); arXiv:0910.2912v1
Unruh, D.: Concurrent composition in the bounded quantum storage model. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 467–486. Springer, Heidelberg (2011)
Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1), 25–58 (2009); Preliminary version in STOC 2006
Yao, A.C.-C.: Quantum circuit complexity. In: FOCS, pp. 352–361. IEEE, Los Alamitos (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 International Association for Cryptologic Research
About this paper
Cite this paper
Hallgren, S., Smith, A., Song, F. (2011). Classical Cryptographic Protocols in a Quantum World. In: Rogaway, P. (eds) Advances in Cryptology – CRYPTO 2011. CRYPTO 2011. Lecture Notes in Computer Science, vol 6841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22792-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-22792-9_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22791-2
Online ISBN: 978-3-642-22792-9
eBook Packages: Computer ScienceComputer Science (R0)