Classical Cryptographic Protocols in a Quantum World

  • Sean Hallgren
  • Adam Smith
  • Fang Song
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6841)

Abstract

Cryptographic protocols, such as protocols for secure function evaluation (SFE), have played a crucial role in the development of modern cryptography. The extensive theory of these protocols, however, deals almost exclusively with classical attackers. If we accept that quantum information processing is the most realistic model of physically feasible computation, then we must ask: what classical protocols remain secure against quantum attackers?

Our main contribution is showing the existence of classical two-party protocols for the secure evaluation of any polynomial-time function under reasonable computational assumptions (for example, it suffices that the learning with errors problem be hard for quantum polynomial time). Our result shows that the basic two-party feasibility picture from classical cryptography remains unchanged in a quantum world.

References

  1. 1.
    Barak, B., Sahai, A.: How to play almost any mental game over the net - concurrent composition via super-polynomial simulation. In: FOCS, pp. 543–552. IEEE, Los Alamitos (2005)Google Scholar
  2. 2.
    Beaver, D.: On deniability in quantum key exchange. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 352–367. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols. In: STOC, pp. 503–513. ACM, New York (1990)Google Scholar
  4. 4.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Ben-Or, M., Crépeau, C., Gottesman, D., Hassidim, A., Smith, A.: Secure multiparty quantum computation with (only) a strict honest majority. In: FOCS, pp. 249–260. IEEE, Los Alamitos (2006)Google Scholar
  6. 6.
    Ben-Or, M., Horodecki, M., Leung, D.W., Mayers, D., Oppenheim, J.: The universal composable security of quantum key distribution. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 386–406. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Ben-Or, M., Mayers, D.: General security definition and composability for quantum and classical protocols, arxiv:quant-ph/0409062v2 (September 2004)Google Scholar
  8. 8.
    Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical quantum oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 351–366. Springer, Heidelberg (1992)Google Scholar
  9. 9.
    Brassard, G., Crépeau, C.: Quantum bit commitment and coin tossing protocols. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 49–61. Springer, Heidelberg (1991)Google Scholar
  10. 10.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1), 143–202 (2000)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145. IEEE, Los Alamitos (2001)Google Scholar
  12. 12.
    Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503. ACM, New York (2002)Google Scholar
  14. 14.
    Crépeau, C., Dumais, P., Mayers, D., Salvail, L.: Computational collapse of quantum state with application to oblivious transfer. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 374–393. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Crépeau, C., Gottesman, D., Smith, A.: Secure multi-party quantum computation. In: STOC, pp. 643–652. ACM, New York (2002)Google Scholar
  16. 16.
    Crépeau, C., Gottesman, D., Smith, A.: Approximate quantum error-correcting codes and secret sharing schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 285–301. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Crépeau, C., Salvail, L., Simard, J.-R., Tapp Classical, A.: quantum strategies for two-prover bit commitments. In: Quantum Information Processing, QIP (2006), http://crypto.cs.mcgill.ca/~crepeau/PDF/CSST06.pdf
  18. 18.
    Damgård, I., Fehr, S., Lunemann, C., Salvail, L., Schaffner, C.: Improving the security of quantum protocols via commit-and-open. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 408–427. Springer, Heidelberg (2009), Full version at arXiv:0902.3918v4CrossRefGoogle Scholar
  19. 19.
    Damgård, I., Fehr, S., Salvail, L., Schaffner, C.: Secure identification and qkd in the bounded-quantum-storage model. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 342–359. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Damgård, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded-quantum-storage model. SIAM J. Comput. 37(6), 1865–1890 (2008)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Damgård, I., Lunemann, C.: Quantum-secure coin-flipping and applications. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 52–69. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Dumais, P., Mayers, D., Salvail, L.: Perfectly concealing quantum bit commitment from any quantum one-way permutation. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 300–315. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Fehr, S., Schaffner, C.: Composing quantum protocols in a classical environment. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 350–367. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: CRYPTO, pp. 526–544. Springer, Heidelberg(1990)Google Scholar
  25. 25.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC, pp. 218–229. ACM, New York (1987)Google Scholar
  26. 26.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity for all languages in np have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18, 186–208 (1989)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. J. ACM 54(1), 1–19 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Hallgren, S., Kolla, A., Sen, P., Zhang, S.: Making classical honest verifier zero knowledge protocols secure against quantum attacks. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 592–603. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. 30.
    Hofheinz, D., Unruh, D.: Simulatable security and polynomially bounded concurrent composability. In: Symposium on Security and Privacy, pp. 169–183. IEEE, Los Alamitos (2006)Google Scholar
  31. 31.
    Kol, G., Naor, M.: Games for exchanging information. In: STOC, pp. 423–432. ACM, New York (2008)Google Scholar
  32. 32.
    Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols and security under composition. SIAM J. Comput. 39(5), 2090–2112 (2010)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation. J. Cryptology 16(3), 143–184 (2003)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Lindell, Y.: General composition and universal composability in secure multiparty computation. J. Cryptology 22(3), 395–428 (2009)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)CrossRefGoogle Scholar
  36. 36.
    Lunemann, C., Nielsen, J.B.: Fully simulatable quantum-secure coin-flipping and applications. In: Africacrypt (February 2011); arXiv:1102.0887Google Scholar
  37. 37.
    Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351–406 (2001)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Naor, M.: Bit commitment using pseudorandomness. J. Cryptology 4(2), 151–158 (1991)MATHCrossRefGoogle Scholar
  39. 39.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  40. 40.
    Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  41. 41.
    Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: STOC, pp. 242–251. ACM, New York (2004)Google Scholar
  42. 42.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6) (2009); Preliminary version in STOC 2005Google Scholar
  43. 43.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)CrossRefGoogle Scholar
  45. 45.
    Unruh, D.: Simulatable security for quantum protocols, arXiv:quant-ph/0409125v2 (2004) Google Scholar
  46. 46.
    Unruh, D.: Quantum proofs of knowledge, IACR ePrint 2010/212 (April 2010)Google Scholar
  47. 47.
    Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg (2010); arXiv:0910.2912v1CrossRefGoogle Scholar
  48. 48.
    Unruh, D.: Concurrent composition in the bounded quantum storage model. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 467–486. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  49. 49.
    Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1), 25–58 (2009); Preliminary version in STOC 2006 MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Yao, A.C.-C.: Quantum circuit complexity. In: FOCS, pp. 352–361. IEEE, Los Alamitos (1993)Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Sean Hallgren
    • 1
  • Adam Smith
    • 1
  • Fang Song
    • 1
  1. 1.Department of Computer Science and EngineeringPennsylvania State UniversityU.S.A.

Personalised recommendations