Effects of Prenatal Exposure to Endocrine Disrupters on Cerebral Cortex Development

  • Anne-Simone ParentEmail author
  • Elise Naveau
  • Jean-Pierre Bourguignon
Part of the Research and Perspectives in Endocrine Interactions book series (RPEI)


For several decades, the focus of most studies on endocrine disrupting chemicals (EDCs) has been the reproductive system, with fertility and hormone-dependent cancers being the most critical issues. Cerebral cortex development is very sensitive to hormonal environment, in particular thyroid hormones and sex steroids. Experimental data concerning early exposure to polychlorinated biphenyls (PCBs) illustrate the detrimental effect of endocrine disrupters on the central nervous system. While epidemiological studies have reported a negative correlation between prenatal exposure to PCBs and cognitive performances, the molecular and cellular mechanisms of such neurotoxicity are incompletely understood. This paper will review the role of thyroid hormones and sex steroids in cerebral cortex development and will illustrate, with PCBs and bisphenol A, the potential effects of EDCs on cerebral cortex development.


  1. Alvarez-Dolado M, Gonzalez-Sancho JM, Bernal J, Munoz A (1998) Developmental expression of the tenascin-C is altered by hypothyroidism in the rat brain. Neuroscience 84:309–322PubMedCrossRefGoogle Scholar
  2. Auso E, Lavado-Autric R, Cuevas E, Del Rey FE, Morreale De Escobar G, Berbel P (2004) A moderate and transient deficiency of maternal thyroid function at the beginning of fetal neocorticogenesis alters neuronal migration. Endocrinology 145:4034–4036CrossRefGoogle Scholar
  3. Baas D, Bourbeau D, Sarlieve LL, Ittel ME, Dussault JH, Puymirat J (1997) Oligodendrocyte maturation and progenitor cell proliferation are independently regulated by thyroid hormone. Glia 19:324–332PubMedCrossRefGoogle Scholar
  4. Cheng SY, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31:139–170PubMedCrossRefGoogle Scholar
  5. Cuevas E, Auso E, Telefont M, Morreale de Escobar G, Sotelo C, Berbel P (2005) Transient maternal hypothyroxinemia at onset of corticogenesis alters tangential migration of medial ganglionic eminence-derived neurons. Eur J Neurosci 22:541–551PubMedCrossRefGoogle Scholar
  6. DeLange F (2000) Endemic cretinism. In: Braverman LE, Utiger RD (eds) The thyroid. Lippincott, Philadelphia, pp 756–767Google Scholar
  7. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30:293–342PubMedCrossRefGoogle Scholar
  8. Dietrich C, Kaina B (2010) The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis 31:1319–1328PubMedCrossRefGoogle Scholar
  9. Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104:13056–13061PubMedCrossRefGoogle Scholar
  10. Farwell AP, Dubord-Tomasetti SA (1999) Thyroid hormone regulates the extracellular organization of laminin on astrocytes. Endocrinology 140:5014–5021PubMedCrossRefGoogle Scholar
  11. Farwell AP, Dubord-Tomasetti SA, Pietzykowski AZ, Stachelek SJ, Leonard JL (2005) Regulation of cerebellar neuronal migration and neurite outgrowth by thyroxine and 3,3′,5′-triiodothyronine. Brain Res Dev Brain Res 154:121–135PubMedCrossRefGoogle Scholar
  12. Forrest D, Vennstrom B (2000) Functions of thyroid hormone receptors in mice. Thyroid 10:41–52PubMedCrossRefGoogle Scholar
  13. Fritsche E, Cline JE, Nguyen NH, Scanlan TS, Abel J (2005) Polychlorinated biphenyls disturb differentiation of normal human neural progenitor cells: clue for involvement of thyroid hormone receptors. Environ Health Perspect 113:871–876PubMedCrossRefGoogle Scholar
  14. Garcia-Segura LM, Melcangi RC (2006) Steroids and glial cell function. Glia 54:485–498PubMedCrossRefGoogle Scholar
  15. Gauger KJ, Kato Y, Haraguchi K, Lehmler HJ, Robertson LW, Bansal R, Zoeller RT (2004) Polychlorinated biphenyls (PCBs) exert thyroid hormone-like effects in the fetal rat brain but do not bind to thyroid hormone receptors. Environ Health Perspect 112:516–523PubMedCrossRefGoogle Scholar
  16. Hajszan T, Leranth C (2010) Bisphenol A interferes with synaptic remodeling. Front Neuroendocrinol 31:519–530PubMedCrossRefGoogle Scholar
  17. Ho SM, Tang WY, Belmonte de Frausto J, Prins GS (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66:5624–5632PubMedCrossRefGoogle Scholar
  18. Horn S, Heuer H (2010) Thyroid hormone action during brain development: more questions than answers. Mol Cell Endocrinol 315:19–26PubMedCrossRefGoogle Scholar
  19. Kodavanti PR (2006) Neurotoxicity of persistent organic pollutants: possible mode(s) of action and further considerations. Dose Response 3:273–305PubMedCrossRefGoogle Scholar
  20. Koibuchi N, Chin WW (2000) Thyroid hormone action and brain development. Trends Endocrinol Metab 11:123–124PubMedCrossRefGoogle Scholar
  21. Lavado-Autric R, Auso E, Garcia-Velasco JV, Arufe Mdel C, Escobar del Rey F, Berbel P, Morreale de Escobar G (2003) Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clin Investig 111:1073–1082PubMedGoogle Scholar
  22. Leranth C, Hajszan T, Szigeti-Buck K, Bober J, MacLusky NJ (2008) Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc Natl Acad Sci USA 105:14187–14191PubMedCrossRefGoogle Scholar
  23. Martinez-Cerdeno V, Noctor SC, Kriegstein AR (2006) Estradiol stimulates progenitor cell division in the ventricular and subventricular zones of the embryonic neocortex. Eur J Neurosci 24:3475–3488PubMedCrossRefGoogle Scholar
  24. McEwen BS, Alves SE (1999) Estrogen actions in the central nervous system. Endocr Rev 20:279–307PubMedCrossRefGoogle Scholar
  25. McKinney JD, Waller CL (1994) Polychlorinated biphenyls as hormonally active structural analogues. Environ Health Perspect 102:290–297PubMedCrossRefGoogle Scholar
  26. Melzer D, Rice NE, Lewis C, Henley WE, Galloway TS (2010) Association of urinary bisphenol a concentration with heart disease: evidence from NHANES 2003/06. PLoS One 5:e8673PubMedCrossRefGoogle Scholar
  27. Nakagami A, Negishi T, Kawasaki K, Imai N, Nishida Y, Ihara T, Kuroda Y, Yoshikawa Y, Koyama T (2009) Alterations in male infant behaviors towards its mother by prenatal exposure to bisphenol A in cynomolgus monkeys (Macaca fascicularis) during early suckling period. Psychoneuroendocrinology 34:1189–1197PubMedCrossRefGoogle Scholar
  28. Nakamura K, Itoh K, Sugimoto T, Fushiki S (2007) Prenatal exposure to bisphenol A affects adult murine neocortical structure. Neurosci Lett 420:100–105PubMedCrossRefGoogle Scholar
  29. Nishizawa H, Imanishi S, Manabe N (2005a) Effects of exposure in utero to bisphenol a on the expression of aryl hydrocarbon receptor, related factors, and xenobiotic metabolizing enzymes in murine embryos. J Reprod Dev 51:593–605PubMedCrossRefGoogle Scholar
  30. Nishizawa H, Morita M, Sugimoto M, Imanishi S, Manabe N (2005b) Effects of in utero exposure to bisphenol A on mRNA expression of arylhydrocarbon and retinoid receptors in murine embryos. J Reprod Dev 51:315–324PubMedCrossRefGoogle Scholar
  31. Nygard M, Wahlstrom GM, Gustafsson MV, Tokumoto YM, Bondesson M (2003) Hormone-dependent repression of the E2F-1 gene by thyroid hormone receptors. Mol Endocrinol 17:79–92PubMedCrossRefGoogle Scholar
  32. Ogura I, Gamo M, Masunaga S, Nakanishi J (2005) Quantitative identification of sources of dioxin-like polychlorinated biphenyls in sediments by a factor analysis model and a chemical mass balance model combined with Monte Carlo techniques. Environ Toxicol Chem 24:277–285PubMedCrossRefGoogle Scholar
  33. Puzianowska-Kuznicka M, Pietrzak M, Turowska O, Nauman A (2006) Thyroid hormones and their receptors in the regulation of cell proliferation. Acta Biochim Polon 53:641–650PubMedGoogle Scholar
  34. Sawaki M, Noda S, Muroi T, Mitoma H, Takakura S, Sakamoto S, Yamasaki K (2003) In utero through lactational exposure to ethinyl estradiol induces cleft phallus and delayed ovarian dysfunction in the offspring. Toxicol Sci 75:402–411PubMedCrossRefGoogle Scholar
  35. Schantz SL, Widholm JJ, Rice DC (2003) Effects of PCB exposure on neuropsychological function in children. Environ Health Perspect 111:357–376PubMedCrossRefGoogle Scholar
  36. Schönfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I (2002) Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect 110:A703–A707PubMedCrossRefGoogle Scholar
  37. Seiwa C, Nakahara J, Komiyama T, Katsu Y, Iguchi T, Asou H (2004) Bisphenol A exerts thyroid hormone-like effects on mouse oligodendrocyte precursor cells. Neuroendocrinology 80:21–30PubMedCrossRefGoogle Scholar
  38. Tokumoto YM, Tang DG, Raff MC (2001) Two molecularly distinct intracellular pathways to oligodendrocyte differentiation: role of a p53 family protein. EMBO J 20:5261–5268PubMedCrossRefGoogle Scholar
  39. Wolstenholme JT, Rissman EF, Connelly JJ (2010) The role of bisphenol A in shaping the brain, epigenome and behavior. Horm Behav 59:296–305Google Scholar
  40. Yaoi T, Itoh K, Nakamura K, Ogi H, Fujiwara Y, Fushiki S (2008) Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem Biophys Res Commun 376:563–567PubMedCrossRefGoogle Scholar
  41. Zoeller RT, Bansal R, Parris C (2005) Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters RC3/neurogranin expression in the developing rat brain. Endocrinology 146:607–612PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Anne-Simone Parent
    • 1
    Email author
  • Elise Naveau
    • 1
  • Jean-Pierre Bourguignon
    • 1
  1. 1.Developmental Neuroendocrinology Unit, GIGA-NeurosciencesUniversity of LiègeLiègeBelgium

Personalised recommendations