Morphologically Identified Sensory Receptor End-Organs in the Airways, Lungs and Visceral Pleura

  • Inge BrounsEmail author
  • Isabel Pintelon
  • Jean-Pierre Timmermans
  • Dirk Adriaensen
Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 211)


Immunohistochemistry, chemical or mechanical denervation, and neuronal tracing, in combination with confocal microscopy have proven to be valuable tools to study the overall sensory innervation of the airways, with special reference to airway sensory receptor morphology. The current overview focuses on the morphology, location, origin and neurochemical coding of intrapulmonary sensory receptor end-organs that are morphologically well characterised: smooth muscle-associated airway receptors (SMARs), neuroepithelial bodies (NEBs) and visceral pleura receptors (VPRs).


Nerve Terminal Airway Smooth Muscle Visceral Pleura Myelinated Nerve Fibre Clara Cell Secretory Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adriaensen D, Scheuermann DW (1993) Neuroendocrine cells and nerves of the lung. Anat Rec 236:70–85PubMedCrossRefGoogle Scholar
  2. Adriaensen D, Timmermans J-P (2004) Purinergic signalling in the lung: important in asthma and COPD? Curr Opin Pharmacol 4:207–214PubMedCrossRefGoogle Scholar
  3. Adriaensen D, Timmermans J-P, Brouns I, Berthoud HR, Neuhuber WL, Scheuermann DW (1998) Pulmonary intraepithelial vagal nodose afferent nerve terminals are confined to neuroepithelial bodies: an anterograde tracing and confocal microscopy study in adult rats. Cell Tissue Res 293:395–405PubMedCrossRefGoogle Scholar
  4. Adriaensen D, Brouns I, Van Genechten J, Timmermans J-P (2003) Functional morphology of pulmonary neuroepithelial bodies: extremely complex airway receptors. Anat Rec 270A:25–40CrossRefGoogle Scholar
  5. Adriaensen D, Brouns I, Pintelon I, De Proost I, Timmermans J-P (2006) Evidence for a role of neuroepithelial bodies as complex airway sensors: comparison with smooth muscle-associated airway receptors. J Appl Physiol 101:960–970PubMedCrossRefGoogle Scholar
  6. Aguayo SM (1993) Pulmonary neuroendocrine cells in tobacco-related lung disorders. Anat Rec 236:122–127PubMedCrossRefGoogle Scholar
  7. Amara SG, Jonas V, Rosenfeld MG (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244PubMedCrossRefGoogle Scholar
  8. Baluk P, Nadel JA, McDonald DM (1992) Substance P-immunoreactive sensory axons in the rat respiratory tract: a quantitative study of their distribution and role in neurogenic inflammation. J Comp Neurol 319:586–598PubMedCrossRefGoogle Scholar
  9. Banks RW, Bewick GS, Reid B, Richardson C (2002) Evidence for activity-dependent modulation of sensory-terminal excitability in spindles by glutamate release from synaptic-like vesicles. Adv Exp Med Biol 508:13–18PubMedCrossRefGoogle Scholar
  10. Bayliss DA, Barret QB (2008) Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci 29:566–575PubMedCrossRefGoogle Scholar
  11. Bergren DR, Peterson DF (1993) Identification of vagal sensory receptors in the rat lung: are there subtypes of slowly adapting receptors? J Physiol 464:681–698PubMedGoogle Scholar
  12. Berkley HJ (1894) The intrinsic pulmonary nerves in mammalia. John Hopkins Hosp Res 4: 240–247Google Scholar
  13. Berthoud H-R, Patterson LM, Neumann F, Neuhuber WL (1997) Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract. Anat Embryol 195:183–191PubMedCrossRefGoogle Scholar
  14. Bewick GS, Reid B, Richardson C, Banks RW (2005) Autogenic modulation of mechanoreceptor excitability by glutamate release from synaptic-like vesicles: evidence from the rat muscle spindle primary sensory ending. J Physiol 562:381–394PubMedCrossRefGoogle Scholar
  15. Bishop AE (2004) Pulmonary epithelial stem cells. Cell Prolif 37:89–96PubMedCrossRefGoogle Scholar
  16. Bollé T, Lauweryns JM, Van Lommel A (2000) Postnatal maturation of neuroepithelial bodies and carotid body innervation: a quantitative investigation in the rabbit. J Neurocytol 29:241–248PubMedCrossRefGoogle Scholar
  17. Bousbaa H, Fleury-Feith J (1991) Effects of a long-standing challenge on pulmonary neuroendocrine cells of actively sensitized guinea pigs. Am Rev Resp Dis 144:714–717PubMedCrossRefGoogle Scholar
  18. Bousbaa H, Poron F, Fleury-Feith J (1994) Changes in chromogranin A-immunoreactive guinea-pig pulmonary neuroendocrine cells after sensitization and challenge with ovalbumin. Cell Tissue Res 275:195–199PubMedCrossRefGoogle Scholar
  19. Brims FJ, Davies HE, Lee YC (2010) Respiratory chest pain: diagnosis and treatment. Med Clin North Am 94:217–232PubMedCrossRefGoogle Scholar
  20. Brouns I, Adriaensen D, Burnstock G, Timmermans J-P (2000) Intraepithelial vagal sensory nerve terminals in rat pulmonary neuroepithelial bodies express P2X3 receptors. Am J Respir Cell Mol Biol 23:52–61PubMedGoogle Scholar
  21. Brouns I, Van Genechten J, Scheuermann DW, Timmermans J-P, Adriaensen D (2002a) Neuroepithelial bodies: a morphologic substrate for the link between neuronal nitric oxide and sensitivity to airway hypoxia? J Comp Neurol 449:343–354PubMedCrossRefGoogle Scholar
  22. Brouns I, Van Nassauw L, Van Genechten J, Majewski M, Scheuermann DW, Timmermans J-P, Adriaensen D (2002b) Triple immunofluorescence staining method with antibodies raised in the same species to study the complex innervation pattern of intrapulmonary chemoreceptors. J Histochem Cytochem 50:575–582PubMedCrossRefGoogle Scholar
  23. Brouns I, Van Genechten J, Burnstock G, Timmermans J-P, Adriaensen D (2003a) Ontogenesis of P2X3 receptor-expressing nerve fibres in the rat lung, with special reference to neuroepithelial bodies. Biomed Res 14:80–86Google Scholar
  24. Brouns I, Van Genechten J, Hayashi H, Gajda M, Gomi T, Burnstock G, Timmermans J-P, Adriaensen D (2003b) Dual sensory innervation of pulmonary neuroepithelial bodies. Am J Respir Cell Mol Biol 28:275–285PubMedCrossRefGoogle Scholar
  25. Brouns I, Pintelon I, Van Genechten J, De Proost I, Timmermans J-P, Adriaensen D (2004) Vesicular glutamate transporter 2 is expressed in different nerve fibre populations that selectively contact pulmonary neuroepithelial bodies. Histochem Cell Biol 121:1–12PubMedCrossRefGoogle Scholar
  26. Brouns I, De Proost I, Pintelon I, Timmermans J-P, Adriaensen D (2006a) Sensory receptors in the airways: neurochemical coding of smooth muscle-associated airway receptors and pulmonary neuroepithelial body innervation. Auton Neurosci 126–127:307–319PubMedCrossRefGoogle Scholar
  27. Brouns I, Pintelon I, De Proost I, Alewaters R, Timmermans J-P, Adriaensen D (2006b) Neurochemical characterisation of sensory receptors in airway smooth muscle: comparison with pulmonary neuroepithelial bodies. Histochem Cell Biol 125:351–367PubMedCrossRefGoogle Scholar
  28. Brouns I, Pintelon I, De Proost I, Timmermans J-P, Adriaensen D (2009a) Diverse and complex airway receptors in rodent lungs. In: Zaccone G, Cutz E, Adriaensen D, Nurse CA, Mauceri A (eds) Airway chemoreceptors in the vertebrates. Structure, evolution and function. Science publishers, Enfield, New Hampshire, pp 235–268CrossRefGoogle Scholar
  29. Brouns I, Oztay F, Pintelon I, De Proost I, Lembrechts R, Timmermans J-P, Adriaensen D (2009b) Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs. Histochem Cell Biol 131:55–74PubMedCrossRefGoogle Scholar
  30. Buckley K, Kelly RB (1985) Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol 100:1284–1294PubMedCrossRefGoogle Scholar
  31. Burgers JA, Meerbeeck JP, Postmus PE (1999) De Pleura. In: Hoogsteden HC, Dekhuijzen PNR, Joos GF, Postmus PE (eds) Leerboek Longziekten. Elsevier/Bunge, Maarssen, pp 247–255Google Scholar
  32. Burnstock G (2009) Purines and sensory nerves. Handb Exp Pharmacol (194):333–392Google Scholar
  33. Cadieux A, Springall DR, Mulderry PK, Rodrigo J, Ghatei MA, Terenghi G, Bloom SR, Polak JM (1986) Occurrence, distribution and ontogeny of CGRP immunoreactivity in the rat lower respiratory tract: effect of capsaicin treatment and surgical denervations. Neuroscience 19:605–627PubMedCrossRefGoogle Scholar
  34. Campanucci VA, Nurse CA (2007) Autonomic innervation of the carotid body: role in efferent inhibition. Respir Phsyiol Neurobiol 157:83–92CrossRefGoogle Scholar
  35. Canning BJ (2006) Reflex regulation of airway smooth muscle tone. J Appl Physiol 101:971–985PubMedCrossRefGoogle Scholar
  36. Capps JA (1911) An experimental study of the pain sense in the pleural membranes. Arch Intern Med 8:717–733Google Scholar
  37. Carabba VH, Sorokin SP, Hoyt RFJ (1985) Development of neuroepithelial bodies in intact and cultured lungs of fetal rats. Am J Anat 173:1–27PubMedCrossRefGoogle Scholar
  38. Castro CM, Yang Y, Zhang Z, Linnoila RI (2000) Attenuation of pulmonary neuroendocrine differentiation in mice lacking Clara cell secretory protein. Lab Invest 80:1533–1540PubMedCrossRefGoogle Scholar
  39. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824PubMedCrossRefGoogle Scholar
  40. Catterall WA, Striessnig J, Snutch TP, Perez-Reyes E (2003) International union of pharmacology. XL. Compendium of voltage-gated ion channels: calcium channels. Pharmacol Rev 55:579–581PubMedCrossRefGoogle Scholar
  41. Chen MF, Kimizuka G, Wang NS (1987) Human fetal lung changes associated with maternal smoking during pregnancy. Pediatr Pulmonol 3:51–58PubMedCrossRefGoogle Scholar
  42. Cho T, Chan W, Cutz E (1989) Distribution and frequency of neuro-epithelial bodies in post-natal rabbit lung: quantitative study with monoclonal antibody against serotonin. Cell Tissue Res 255:353–362PubMedCrossRefGoogle Scholar
  43. Clara M (1937) Zur Histobiologie des Bronchialepithels. Z Microsk Anat Forsch 41:321–347Google Scholar
  44. Cook RD, King AS (1969) A neurite-receptor complex in the avian lung: electron microscopical observations. Experientia 25:1162–1164PubMedCrossRefGoogle Scholar
  45. Coulson FR, Fryer AD (2003) Muscarinic acetylcholine receptors and airway diseases. Pharmacol Ther 98:59–69PubMedCrossRefGoogle Scholar
  46. Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A, Minna JD (1985) Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316:823–826PubMedCrossRefGoogle Scholar
  47. Cutz E (1997) Studies on neuroepithelial bodies under experimental and disease conditions. In: Cutz E (ed) Cellular and molecular biology of airway chemoreceptors. Landes Bioscience, Austin, pp 109–129Google Scholar
  48. Cutz E, Jackson A (1999) Neuroepithelial bodies as airway oxygen sensors. Respir Physiol 115:201–214PubMedCrossRefGoogle Scholar
  49. Cutz E, Chan W, Wong V, Conen PE (1974) Endocrine cells in rat fetal lungs. Ultrastructural and histochemical study. Lab Invest 30:458–464PubMedGoogle Scholar
  50. Cutz E, Chan W, Sonstegard KS (1978) Identification of neuro-epithelial bodies in rabbit fetal lungs by scanning electron microscopy: a correlative light, transmission and scanning electron microscopic study. Anat Rec 192:459–466PubMedCrossRefGoogle Scholar
  51. Cutz E, Chan W, Track NS (1981) Bombesin, calcitonin and leu-enkephalin immunoreactivity in endocrine cells of human lung. Experientia 37:765–767PubMedCrossRefGoogle Scholar
  52. Cutz E, Gillan JE, Track NS (1984) Pulmonary endocrine cells in the developing human lung and during neonatal adaptation. In: Becker KL, Gazdar AF (eds) The endocrine lung in health and disease. WB Saunders, Philadelphia, pp 210–327Google Scholar
  53. Cutz E, Gillan JE, Bryan AC (1985) Neuroendocrine cells in the developing human lung: morphologic and functional considerations. Pediatr Pulmonol 1:S21–S29PubMedGoogle Scholar
  54. Cutz E, Fu XW, Yeger H, Peers C, Kemp PJ (2003) Oxygen sensing in pulmonary neuroepithelial bodies and related tumor cell models. In: Lahiri S, Semenza GL, Prabhakar NR (eds) Lung oxygen sensing. Marcel Dekker, New York, pp 567–602Google Scholar
  55. Cutz E, Fu XW, Yeger H (2004) Methods to study neuroepithelial bodies as airway oxygen sensors. Methods Enzymol 381:26–40PubMedCrossRefGoogle Scholar
  56. Cutz E, Yeger H, Pan J, Ito T (2008) Pulmonary neuroendocrine cell system in health and disease. Curr Respir Med Rev 4:174–186Google Scholar
  57. Cutz E, Pan J, Yeger H (2009a) The role of NOX2 and ‘Novel oxidases’ in airway chemoreceptor O2 sensing. Adv Exp Med Biol 648:427–438PubMedCrossRefGoogle Scholar
  58. Cutz E, Fu XW, Yeger H, Pan J, Nurse CA (2009b) Oxygen sensing in mammalian pulmonary neuroepithelial bodies. In: Zaccone G, Cutz E, Adriaensen D, Nurse CA, Mauceri A (eds) Airway chemoreceptors in the vertebrates. Structure, evolution and function. Science Publishers, Enfield, New Hampshire, pp 269–290CrossRefGoogle Scholar
  59. Dakhama A, Kanehiro A, Mäkelä MJ, Loader JE, Larsen GL, Gelfand EW (2002) Regulation of airway hyperresponsiveness by calcitonin gene-related peptide in allergen sensitised and challenged mice. Am J Respir Crit Care Med 165:1137–1144PubMedGoogle Scholar
  60. Dakhama A, Larsen GL, Gelfand EW (2004) Calcitonin gene-related peptide: role in airway homeostasis. Curr Opin Pharmacol 4:215–220PubMedCrossRefGoogle Scholar
  61. Day IN, Thompson RJ (2010) UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog Neurobiol 90:327–362PubMedCrossRefGoogle Scholar
  62. De Proost I, Pintelon I, Brouns I, Timmermans J-P, Adriaensen D (2007a) Selective visualisation of sensory receptors in the smooth muscle layer of ex vivo airway whole mounts by styryl pyridinium dyes. Cell Tissue Res 329:421–431PubMedCrossRefGoogle Scholar
  63. De Proost I, Brouns I, Pintelon I, Timmermans J-P, Adriaensen D (2007b) Pulmonary expression of voltage-gated calcium channels: special reference to sensory airway receptors. Histochem Cell Biol 128:301–316PubMedCrossRefGoogle Scholar
  64. De Proost I, Pintelon I, Brouns I, Kroese ABA, Riccardi D, Kemp PJ, Timmermans J-P, Adriaensen D (2008) Functional live cell imaging of the pulmonary neuroepithelial body microenvironment. Am J Respir Cell Mol Biol 39:180–189PubMedCrossRefGoogle Scholar
  65. De Proost I, Pintelon I, Wilkinson WJ, Goethals S, Brouns I, Van Nassauw L, Riccardi D, Timmermans J-P, Kemp PJ, Adriaensen D (2009) Purinergic signaling in the pulmonary neuroepithelial body microenvironment unraveled by live cell imaging. FASEB J 23:1153–1160PubMedCrossRefGoogle Scholar
  66. Dey RD, Hoffpauir JM (1986) Ultrastructural colocalization of the bioactive mediators 5-hydroxytryptamine and bombesin in endocrine cells of human fetal airways. Cell Tissue Res 246:119–124PubMedCrossRefGoogle Scholar
  67. Dinh QT, Groneberg D, Peiser C, Mingomataj E, Joachima RA, Witt C, Arck PC, Klappa FH, Fischer A (2004) Substance P expression in TRPV1 and trkA-positive dorsal root ganglion neurons innervating the mouse lung. Respir Physiol Neurobiol 144:15–24PubMedCrossRefGoogle Scholar
  68. Dobretsov M, Hastings SL, Sims TJ, Stimers JR, Romanovsky D (2003) Stretch receptor-associated expression of alpha 3 isoform of the Na+, K+-ATPase in rat peripheral nervous system. Neuroscience 116:1069–1080PubMedCrossRefGoogle Scholar
  69. Domnik NJ, Cutz E (2011) Pulmonary neuroepithelial bodies as airway sensors: putative role in the generation of dyspnea. Curr Opin Pharmacol 11:211–217PubMedCrossRefGoogle Scholar
  70. Duc C, Barakat-Walter I, Droz B (1994) Innervation of putative rapidly adapting mechanorecptors by calbindin- and calretinin-immunoreactive primary sensory neurons in the rat. Eur J Neurosci 6:264–271PubMedCrossRefGoogle Scholar
  71. Dütsch M, Eichhorn U, Wörl J, Wank M, Berthoud H-R, Neuhuber WL (1998) Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immunocytochemical study with special emphasis on calcium- binding proteins. J Comp Neurol 398:289–307PubMedCrossRefGoogle Scholar
  72. Dwinnell FL (1966) Studies on the nerve endings in the visceral pleura. Am J Anat 118:217–226PubMedCrossRefGoogle Scholar
  73. e Silva MJ, Lewis DL (1995) L- and N-type Ca2+ channels in adult rat carotid body chemoreceptor type I cells. J Physiol 489:689–699PubMedGoogle Scholar
  74. Elftman AG (1943) The afferent and parasympathetic innervation of the lungs and trachea of the dog. Am J Anat 72:1–27CrossRefGoogle Scholar
  75. England DM, Hochholzer L, McCarthy MJ (1989) Localized benign and malignant fibrous tumors of the pleura. Am J Surg Pathol 13:640–658PubMedCrossRefGoogle Scholar
  76. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA (2000) Nomenclature of voltage-gated calcium channels. Neuron 25:533–535PubMedCrossRefGoogle Scholar
  77. Feyrter F (1938) In: Barth JA (ed) Uber diffuse endokrine epitheliale Organe. Leipzig, pp 1–62Google Scholar
  78. Feyrter F (1953) Über die peripheren endokrinen (parakrinen) Drüsen des Menschen. Wilhelm Maudrich, WienGoogle Scholar
  79. Fischer A, Kummer W, Couraud JY, Adler D, Branscheid D, Heym C (1992) Immunohistochemical localization of receptors for vasoactive intestinal peptide and substance P in human trachea. Lab Invest 67:387–393PubMedGoogle Scholar
  80. Fox EA, Phillips RJ, Baronowsky EA, Byerly MS, Jones S, Powley TL (2001) Neurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety. J Neurosci 21:8602–8615PubMedGoogle Scholar
  81. Fröhlich F (1949) Die “Helle Zelle” der Bronchialschleimhaut und ihre Beziehungen zum Problem der Chemoreceptoren. Frankf Z Pathol 60:517–559PubMedGoogle Scholar
  82. Fu XW, Spindel ER (2009) Recruitment of GABA(A) receptors in chemoreceptor pulmonary neuroepithelial bodies by prenatal nicotine exposure in monkey lung. Adv Exp Med Biol 648:439–445PubMedCrossRefGoogle Scholar
  83. Fu XW, Nurse CA, Wang YT, Cutz E (1999) Selective modulation of membrane currents by hypoxia in intact airway chemoreceptors from neonatal rabbit. J Physiol 514:139–150PubMedCrossRefGoogle Scholar
  84. Fu XW, Wang D, Nurse CA, Dinauer MC, Cutz E (2000) NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc Natl Acad Sci USA 97:4374–4379PubMedCrossRefGoogle Scholar
  85. Fu XW, Wang D, Pan J, Farragher SM, Wong V, Cutz E (2001) Neuroepithelial bodies in mammalian lung express functional serotonin type 3 receptor. Am J Physiol Lung Cell Mol Physiol 281:L931–L940PubMedGoogle Scholar
  86. Fu XW, Nurse CA, Wong V, Cutz E (2002) Hypoxia-induced secretion of serotonin from intact pulmonary neuroepithelial bodies in neonatal rabbit. J Physiol 539:503–510PubMedCrossRefGoogle Scholar
  87. Fu XW, Nurse CA, Farragher SM, Cutz E (2003) Expression of functional nicotinic acetylcholine receptors in neuroepithelial bodies of neonatal hamster lung. Am J Physiol Lung Cell Mol Physiol 285:1203–1212Google Scholar
  88. Fu XW, Nurse C, Cutz E (2004) Expression of functional purinergic receptors in pulmonary neuroepithelial bodies and their role in hypoxia chemotransmission. Biol Chem 385:275–284PubMedCrossRefGoogle Scholar
  89. Fu XW, Nurse C, Cutz E (2007) Characterization of slowly inactivating KVá current in rabbit pulmonary neuroepithelial bodies: effects of hypoxia and nicotine. Am J Physiol Lung Cell Mol Physiol 293:L892–L902PubMedCrossRefGoogle Scholar
  90. Fujita T, Kanno T, Kobayashi S (1988) The paraneuron. Springer, TokyoGoogle Scholar
  91. Gallego R, Garcia-Caballero T, Roson E, Beiras A (1990) Neuroendocrine cells of the human lung express substance-P-like immunoreactivity. Acta Anat (Basel) 139:278–282CrossRefGoogle Scholar
  92. Giangreco A, Groot KR, Janes SM (2007) Lung cancer and lung stem cells: strange bedfellows? Am J Respir Crit Care Med 175:547–553PubMedCrossRefGoogle Scholar
  93. Gomez-Pascual A, Martin-Lacave I, Moreno AM, Fernandez A, Galera H (1990) Neuroendocrine (NE) cells in rat neonatal lungs. A histochemical and immuncytochemical study. Anat Histol Embryol 19:158–163PubMedCrossRefGoogle Scholar
  94. Gosney JR (1993) Pulmonary neuroendocrine cells in species at high altitude. Anat Rec 236:105–107PubMedCrossRefGoogle Scholar
  95. Gosney JR, Sissons M (1985) Widespread distribution of bronchopulmonary endocrine cells immunoreactive for calcitonin in the lung of the normal adult rat. Thorax 40:194–198PubMedCrossRefGoogle Scholar
  96. Hage E (1976) Endocrine-like cells of the pulmonary epithelium. In: Coupland RE, Fujita T (eds) Chromaffin, enterochromaffin and related cells. Elsevier, AmsterdamGoogle Scholar
  97. Haller CJ (1994) A scanning and transmission electron microscopic study of the development of the surface structure of neuroepithelial bodies in the mouse lung. Micron 25:527–538PubMedCrossRefGoogle Scholar
  98. Hartness ME, Lewis A, Searle GJ, O’Kelly I, Peers C, Kemp PJ (2001) Combined antisense and pharmacological approaches implicate hTASK as an airway O2 sensing K+ channel. J Biol Chem 276:26499–26508PubMedCrossRefGoogle Scholar
  99. Helle KB (2010) Regulatory peptides from chromogranin A and secretogranin II: putative modulators of cells and tissues involved in inflammatory conditions. Regul Pept 165:45–51PubMedCrossRefGoogle Scholar
  100. Helliwell RJA, McLatchie LM, Clarke M, Winter J, Bevan S, McIntyre P (1998) Capsaicin sensitivity is associated with the expression of the vanniloid (capsaicin) receptor (VR1) mRNA in adult rat sensory ganglia. Neurosci Lett 250:177–180PubMedCrossRefGoogle Scholar
  101. Helset E, Kjaeve J, Bjertnaes L, Lundberg JM (1995) Acute alveolar hypoxia increases endothelin-1 release but decreases release of calcitonin gene-related peptide in isolated perfused rat lungs. Scand J Clin Lab Invest 55:369–376PubMedCrossRefGoogle Scholar
  102. Hering E (1868) Die Selbesteuerung der Athmung durch den Nervus vagus. Sber Akad Wiss Wein 57:672–677Google Scholar
  103. Hille B (1986) Ionic channels: molecular pores of excitable membranes. Harvey Lect 82:47–69PubMedGoogle Scholar
  104. Ho C-Y, Gu Q, Lin YS, Lee L-Y (2001) Sensitivity of vagal afferent endings to chemical irritants in the rat lung. Respir Physiol 127:113–124PubMedCrossRefGoogle Scholar
  105. Holzer P (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol Rev 43:143–201PubMedGoogle Scholar
  106. Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR (2001) Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol 24:671–681PubMedGoogle Scholar
  107. Honig MG (1993) DiI Labelling. Neurosci Prot 93-050-16-01-20Google Scholar
  108. Honjin R (1956) On the nerve supply of the lung of the mouse, with special reference to the structure of the peripheral vegetative nervous system. J Comp Neurol 105:587–625PubMedCrossRefGoogle Scholar
  109. Housley GD, Bringmann A, Reichenbach A (2009) Purinergic signaling in special senses. Trends Neurosci 32:128–141PubMedCrossRefGoogle Scholar
  110. Hung K-S (1980) Innervation of rabbit fetal lungs. Am J Anat 159:78–83CrossRefGoogle Scholar
  111. Hung K-S (1982) Development of neuroepithelial bodies in pre- and postnatal mouse lungs: scanning electron microscopic study. Anat Rec 203:285–291PubMedCrossRefGoogle Scholar
  112. Hung K-S (1984) Histology, ultrastructure, and development of the pulmonary endocrine cell. In: Becker KL, Gazdar AF (eds) The endocrine lung in health and disease. WB Saunders, Philadelphia, pp 162–192Google Scholar
  113. Hung K-S, Loosli CG (1974) Bronchiolar neuro-epithelial bodies in the neonatal mouse lungs. Am J Anat 140:191–200PubMedCrossRefGoogle Scholar
  114. Hung K-S, Hertweck MS, Hardy JD, Loosli CG (1973) Ultrastructure of nerves and associated cells in bronchiolar epithelium of the mouse lung. J Ultrastr Res 43:426–437CrossRefGoogle Scholar
  115. Ito T, Nozawa A, Usuda Y, Kitamura H, Kanisawa M (1995) Hamster pulmonary endocrine cells with neural cell adhesion molecule (NCAM) immunostaining. Histochem Cell Biol 104:357–362PubMedCrossRefGoogle Scholar
  116. Ito T, Udaka N, Inayama Y, Kitamura H, Kanisawa M (1998) Hamster pulmonary endocrine cells with positive immunostaining for calbindin-D-28K. Histochem Cell Biol 109:67–73PubMedGoogle Scholar
  117. Ito T, Udaka N, Kawano N, Nogawa H, Kitamura H (1999) Ontogeny of pulmonary neuroendocrine cells which express the alpha-subunit of guanine nucleotide-binding protein Go. Histochem Cell Biol 111:289–295PubMedCrossRefGoogle Scholar
  118. Jammes Y, Trousse D, Delpierre S (2005) Identification and properties of parietal pleural afferents in rabbits. J Physiol 567:641–650PubMedCrossRefGoogle Scholar
  119. Jeffery PK (1995) Structure: microscopic structure of normal lung. In: Corrin B, Geddes DM, Gibson GJ (eds) Respiratory medicine. WB Saunders, London, pp 3–72Google Scholar
  120. Jeffery PK, Reid L (1975) New observations of rat airway epithelium: a quantitative and electron microscopic study. J Anat 120:195–320Google Scholar
  121. Kannari K, Sato O, Maeda T, Iwanaga T, Fujita T (1991) A possible mechanism of mechanoreception in Ruffini endings in the peridontal ligament of hamster incisors. J Comp Neurol 313:368–376PubMedCrossRefGoogle Scholar
  122. Kasacka I (2008) Quantitative characteristics of calcitonin-producing cells in the thyroid and lungs of uremic rats. Folia Histochem Cytobiol 46:525–530PubMedCrossRefGoogle Scholar
  123. Kasprzak A, Zabel M, Biczysko W (2007) Selected markers (chromogranin A, neuron-specific enolase, synaptophysin, protein gene product 9.5) in diagnosis and prognosis of neuroendocrine pulmonary tumours. Pol J Pathol 58:23–33PubMedGoogle Scholar
  124. Katz DM, Markey KA, Goldstein M, Black IB (1983) Expression of catecholaminergic characteristics by primary sensory neurons in the normal adult rat in vivo. Proc Natl Acad Sci USA 80:3526–3530PubMedCrossRefGoogle Scholar
  125. Katz DM, Adler JE, Black IB (1987) Catecholaminergic sensory neurons: autonomic targets and mechanisms of transmitter regulation. FASEB J 46:24–29Google Scholar
  126. Keith IM, Pelto-Huikko M, Schalling M, Hokfelt T (1991) Calcitonin gene-related peptide and its mRNA in pulmonary neuroendocrine cells and ganglia. Histochemistry 96:311–315PubMedCrossRefGoogle Scholar
  127. Kemp PJ (2006) Detecting acute changes in oxygen: will the real sensor please stand up? Exp Physiol 91:829–834PubMedCrossRefGoogle Scholar
  128. Kemp PJ, Peers C (2009) Enzyme-linked acute oxygen sensing in airway and arterial chemoreceptors–invited article. Adv Exp Med Biol 648:39–48PubMedCrossRefGoogle Scholar
  129. Kemp PJ, Lewis A, Hartness M, Searle GJ, Miller P, O’Kelly I, Peers C (2002) Airway chemotransduction: from oxygen sensor to cellular effector. Am J Respir Crit Care Med 166:S17–S24PubMedCrossRefGoogle Scholar
  130. Kemp PJ, Searle GJ, Hartness ME, Lewis A, Miller P, Williams S, Wootton P, Adriaensen D, Peers C (2003) Acute oxygen sensing in cellular models: relevance to the physiology of pulmonary neuroepithelial and carotid bodies. Anat Rec 270:41–50CrossRefGoogle Scholar
  131. Kemp PJ, Telezhkin V, Wilkinson WJ, Mears R, Hanmer SB, Gadeberg HC, Muller CT, Riccardi D, Brazier SP (2009) Enzyme-linked oxygen sensing by potassium channels. Ann N Y Acad Sci 1177:112–118PubMedCrossRefGoogle Scholar
  132. Kiefer JC (2011) Primer and interviews: the dynamic stem cell niche. Dev Dyn 240:737–743PubMedCrossRefGoogle Scholar
  133. Kim D (2003) Fatty acid-sensitive two-pore domain K+ channels. Trends Pharmacol Sci 24:648–654PubMedCrossRefGoogle Scholar
  134. Kollarik M, Ru F, Brozmanova M (2010) Vagal afferent nerves with the properties of nociceptors. Auton Neurosci Basic Clin 153:12–20CrossRefGoogle Scholar
  135. Kratz JR, Yagui-Beltran A, Jablons DM (2010) Cancer stem cells in lung tumorigenesis. Ann Thorac Surg 89:S2090–S2095PubMedCrossRefGoogle Scholar
  136. Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR (2006) Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol 101:618–627PubMedCrossRefGoogle Scholar
  137. Kummer W, Gibbins IL, Stefan P, Kapoor V (1990) Catecholamines and catecholamine-synthesizing enzymes in guinea-pig sensory ganglia. Cell Tissue Res 261:595–606PubMedCrossRefGoogle Scholar
  138. Kummer W, Fischer A, Kurkowski R, Heym C (1992b) The sensory and sympathetic innervation of guinea pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience 49:715–737PubMedCrossRefGoogle Scholar
  139. Kummer W, Lips KS, Pfeil U (2008) The epithelial cholinergic system of the airways. Histochem Cell Biol 130:219–234PubMedCrossRefGoogle Scholar
  140. Kuo HP, Rohde JA, Tokuyama K, Barnes PJ, Rogers DF (1990) Capsaicin and sensory neuropeptide stimulation of goblet cell secretion in guinea-pig trachea. J Physiol 431:629–641PubMedGoogle Scholar
  141. Larsell O (1921) Nerve termination in the lung of the rabbit. J Comp Neurol 33:105–132CrossRefGoogle Scholar
  142. Larsell O (1922) The ganglia, plexuses, and nerve-terminations of the mammalian lung and pleura pulmonalis. J Comp Neurol 35:97–132CrossRefGoogle Scholar
  143. Larsell O, Coffey JR (1928) The effect on respiration of stimulating the nerve terminations in the visceral pleura. Anat Rec 28:20Google Scholar
  144. Larsell O, Dow RS (1933) The innervation of the human lung. Am J Anat 52:125–146CrossRefGoogle Scholar
  145. Larson SD, Schelegle ES, Hyde DM, Plopper CG (2003) The three-dimensional distribution of nerves along the entire intrapulmonary airway tree of the adult rat and the anatomical relationship between nerves and neuroepithelial bodies. Am J Respir Cell Mol Biol 28:592–599PubMedCrossRefGoogle Scholar
  146. Lauweryns JM, Cokelaere M (1973a) Hypoxia-sensitive neuro-epithelial bodies. Intrapulmonary secretory neuroreceptors modulated by the CNS. Z Zellforsch 143:521–540CrossRefGoogle Scholar
  147. Lauweryns JM, Cokelaere M (1973b) Intrapulmonary neuro-epithelial bodies: hypoxia-sensitive neuro(chemo-)receptors. Experientia 29:1384–1386PubMedCrossRefGoogle Scholar
  148. Lauweryns JM, Peuskens JC (1972) Neuro-epithelial bodies (neuroreceptor or secretory organs?) in human infant bronchial and bronchiolar epithelium. Anat Rec 172:471–481PubMedCrossRefGoogle Scholar
  149. Lauweryns JM, Van Lommel A (1982) Morphometric analysis of hypoxia-induced synaptic activity in intrapulmonary neuroepithelial bodies. Cell Tissue Res 226:201–214PubMedGoogle Scholar
  150. Lauweryns JM, Van Lommel A (1986) Effect of various vagotomy procedures on the reaction to hypoxia of rabbit neuroepithelial bodies: modulation by intrapulmonary axon reflexes. Exp Lung Res 11:319–339PubMedCrossRefGoogle Scholar
  151. Lauweryns JM, Van Lommel A (1987) Ultrastructure of nerve endings and synaptic junctions in rabbit intrapulmonary neuroepithelial bodies: a single and serial section analysis. J Anat 151:65–83PubMedGoogle Scholar
  152. Lauweryns JM, Van Ranst L (1987) Calcitonin gene related peptide immunoreactivity in rat lung: light and electron microscopic study. Thorax 42:183–189PubMedCrossRefGoogle Scholar
  153. Lauweryns JM, Van Ranst L (1988a) Protein gene product 9.5 expression in the lungs of humans and other mammals. Immunocytochemical detection in neuroepithelial bodies, neuroendocrine cells and nerves. Neurosci Lett 85:311–316PubMedCrossRefGoogle Scholar
  154. Lauweryns JM, Van Ranst L (1988b) Immunocytochemical localization of aromatic L-amino acid decarboxylase in human, rat, and mouse bronchopulmonary and gastrointestinal endocrine cells. J Histochem Cytochem 36:1181–1186PubMedCrossRefGoogle Scholar
  155. Lauweryns JM, de Bock V, Verhofstad AA, Steinbusch HW (1982) Immunohistochemical localization of serotonin in intrapulmonary neuro-epithelial bodies. Cell Tissue Res 226:215–223PubMedGoogle Scholar
  156. Lauweryns JM, Van Lommel AT, Dom RJ (1985) Innervation of rabbit intrapulmonary neuroepithelial bodies. Quantitative and qualitative ultrastructural study after vagotomy. J Neurol Sci 67:81–92PubMedCrossRefGoogle Scholar
  157. Lauweryns JM, de Bock V, Decramer M (1987) Effects of unilateral vagal stimulation on intrapulmonary neuroepithelial bodies. J Appl Physiol 63:1781–1787PubMedGoogle Scholar
  158. Lee I, Gould VE, Moll R, Wiedenmann B, Franke WW (1987) Synatophysin expressed in the bronchopulmonary tract: neuroendocrine cells, neuroepithelial bodies, and neuroendocrine neoplasms. Differentiation 34:115–125PubMedCrossRefGoogle Scholar
  159. Lembrechts R, Pintelon I, Schnorbusch K, Timmermans J-P, Adriaensen D, Brouns I (2011) Expression of mechanogated Two-pore-domain potassium channels in mouse lungs: special reference to mechanosensory airway receptors. Histochem Cell BiolGoogle Scholar
  160. Liedtke W, Kim C (2005) Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon! Cell Mol Life Sci 62:2985–3001PubMedCrossRefGoogle Scholar
  161. Li K, Nagalla SR, Spindel ER (1994) A rhesus monkey model to characterize the role of gastrin-releasing peptide (GRP) in lung development. Evidence for stimulation of airway growth. J Clin Invest 94: 1605–1615Google Scholar
  162. Linnoila RI (2006) Functional facets of the pulmonary neuroendocrine system. Lab Invest 86:425–444PubMedCrossRefGoogle Scholar
  163. Liu X, Driskell RR, Engelhardt JF (2006) Stem cells in the lung. Methods Enzymol 419:285–321PubMedCrossRefGoogle Scholar
  164. Lopez-Barneo J (1994) Oxygen-sensitive ion channels: how ubiquitous are they? Trends Neurosci 17:133–135PubMedCrossRefGoogle Scholar
  165. Lundberg JM, Hokfelt T, Martling C-R, Saria A, Cuello C (1984) Substance P-immunoreactive sensory nerves in the lower respiratory tract of various mammals including man. Cell Tissue Res 235:251–261PubMedCrossRefGoogle Scholar
  166. Luts A, Uddman R, Absood A, Håkanson R, Sundler F (1991) Chemical coding of endocrine cells of the airways: presence of helodermin-like peptides. Cell Tissue Res 265:425–433PubMedCrossRefGoogle Scholar
  167. Mahvi D, Bank H, Harley R (1977) Morphology of a napthalene-induced bronchiolar lesion. Am J Pathol 86:558–572PubMedGoogle Scholar
  168. Maingret F, Fosset M, Lesage F, Lazdunski M, Honoré E (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274:1381–1387PubMedCrossRefGoogle Scholar
  169. Marangos PJ, Schmechel D, Zis AP, Goodwin FK (1979) The existence and neurobiological significance of neuronal and glial forms of the glycolytic enzyme enolase. Biol Psychiatry 14:563–579PubMedGoogle Scholar
  170. Martling C-R, Saria A, Fischer JA, Hökfelt T, Lundberg JM (1988) Calcitonin gene-related peptide and the lung: neuronal coexistence with substance P, release by capsaicin and vasodilatory effect. Regul Pept 20:125–139PubMedCrossRefGoogle Scholar
  171. Mazzone SB, Reynolds SM, Mori N, Koller DL, Farmer DG, Myers AC, Canning BJ (2009) Selective expression of a sodium pump isozyme by cough receptors and evidence for its essential role in regulating cough. J Neurosci 29:13662–13671PubMedCrossRefGoogle Scholar
  172. McBride JT, Springall DR, Winter RJ, Polak JM (1990) Quantitative immunocytochemistry shows calcitonin gene-related peptide-like immunoreactivity in lung neuroendocrine cells is increased by chronic hypoxia in the rat. Am J Respir Cell Mol Biol 3:587–593PubMedGoogle Scholar
  173. McLaughlin AIG (1933) Nerves and nerve endings in the visceral pleura of the cat. J Physiol 80:101–104PubMedGoogle Scholar
  174. Melville GN, Iravani J (1975) Factors affecting ciliary beat frequency in the intrapulmonary airways of rats. Can J Physiol Pharmacol 53:1122–1128PubMedCrossRefGoogle Scholar
  175. Meuwissen R, Berns A (2005) Mouse models for human lung cancer. Genes Dev 19:643–664PubMedCrossRefGoogle Scholar
  176. Montuenga LM, Guembe L, Burrell MA, Bodegas ME, Calvo A, Sola JJ, Sesma P, Villaro CA (2003) The diffuse endocrine system: from embryogenesis to carcinogenesis. Prog Histochem Cytochem 38:155–272PubMedCrossRefGoogle Scholar
  177. Moore KL (1992) The thorax. In: Satterfield ST (ed) Clinically oriented anatomy. Williams and Wilkins, Baltimore, USA, pp 33–126Google Scholar
  178. Morikawa Y, Donahoe PK, Hendren WH (1978a) Cholinergic nerve development in fetal lung. Dev Biol 65:541–546PubMedCrossRefGoogle Scholar
  179. Morikawa Y, Donahoe PK, Hendren WH (1978b) Cholinergic nerve development of fetal lung in vitro. J Pediatr Surg 13:653–661PubMedCrossRefGoogle Scholar
  180. Murray JF (2010) The structure and function of the lung. Int J Tuberc Lung Dis 14:391–396PubMedGoogle Scholar
  181. Myers AC, Kajekar R, Undem BJ (2002) Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am J Physiol Lung Cell Mol Physiol 282:L775–L781PubMedGoogle Scholar
  182. Navone F, Jahn R, Di Gioia G, Stukenbrok H, Greengard P, De Camilli P (1986) Protein p38: An integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol 103:2511–2527PubMedCrossRefGoogle Scholar
  183. O’Kelly I, Peers C, Kemp PJ (1998) O2-sensitive K+ channels in neuroepithelial body-derived small cell carcinoma cells of the human lung. Am J Physiol 275:L709–L716PubMedGoogle Scholar
  184. O’Kelly I, Peers C, Kemp PJ (2001) NADPH oxidase does not account fully for O2-sensing in model airway chemoreceptor cells. Biochem Biophys Res Commun 283:1131–1134PubMedCrossRefGoogle Scholar
  185. Oh EJ, Mazzone SB, Canning BJ, Weinreich D (2006) Reflex regulation of airway sympathetic nerves in guinea-pigs. J Physiol 573:549–564PubMedCrossRefGoogle Scholar
  186. O'Kelly I, Stephens RH, Peers C, Kemp PJ (1999) Potential identification of the O2-sensitive K+ current in a human neuroepithelial body-derived cell line. Am J Physiol 276:L96–L104PubMedGoogle Scholar
  187. O'Kelly I, Lewis A, Peers C, Kemp PJ (2000) O2 sensing by airway chemoreceptor-derived cells: protein kinase C activation reveals functional evidence for involvement of NADPH oxidase. J Biol Chem 275:7684–7692PubMedCrossRefGoogle Scholar
  188. Overholt JL, Prabhakar NR (1997) Ca2+ current in rabbit carotid body glomus cells is conducted by multiple types of high-voltage-activated Ca2+ channels. J Neurophysiol 78:2467–2474PubMedGoogle Scholar
  189. Oztay F, Brouns I, Pintelon I, Raab M, Neuhuber WL, Timmermans J-P, Adriaensen D (2010) Neurotrophin-4 dependency of intraepithelial vagal sensory nerve terminals that selectively contact pulmonary NEBs in mice. Histol Histopathol 25:975–984PubMedGoogle Scholar
  190. Pack RJ, Barker S, Howe A (1986) The effect of hypoxia on the number of amine-containing cells in the lung of the adult rat. Eur J Respir Dis 68:121–130PubMedGoogle Scholar
  191. Pan J, Yeger H, Cutz E (2004) Innervation of pulmonary neuroendocrine cells and neuroepithelial bodies in developing rabbit lung. J Histochem Cytochem 52:379–389PubMedCrossRefGoogle Scholar
  192. Pan J, Luk C, Kent G, Cutz E, Yeger H (2006a) Pulmonary neuroendocrine cells, airway innervation, and smooth muscle are altered in Cftr null mice. Am J Respir Cell Mol Biol 35:320–326PubMedCrossRefGoogle Scholar
  193. Pan J, Copland I, Post M, Yeger H, Cutz E (2006b) Mechanical stretch-induced serotonin release from pulmonary neuroendocrine cells: implications for lung development. Am J Physiol Lung Cell Mol Physiol 290:L185–L193PubMedCrossRefGoogle Scholar
  194. Pearsall AD, Hoyt RF, Sorokin SP (1985) Three-dimensional reconstruction of a small-granule paracrine cell cluster in an adult hamster bronchus. Anat Rec 212:132–142PubMedCrossRefGoogle Scholar
  195. Pearse AG (1977) The diffuse neuroendocrine system and the APUD concept: related “endocrine” peptides in the brain, intestine, pituitary, placenta, and anuran cutaneous glands. Med Biol 55:115–125PubMedGoogle Scholar
  196. Peers C, Kemp PJ (2001) Acute oxygen sensing: diverse but convergent mechanisms in airway and arterial chemoreceptors. Respir Res 2:145–149PubMedCrossRefGoogle Scholar
  197. Perez-Pinera P, García-Suarez O, Germanà A, Díaz-Esnal B, de Carlos F, Silos-Santiago I, del Valle ME, Cobo J, Vega JA (2008) Characterization of sensory deficits in TrkB knockout mice. Neurosci Lett 433:43–47PubMedCrossRefGoogle Scholar
  198. Phillips RJ, Powley TL (2000) Tension and stretch receptors in gastrointestinal smooth muscle: re-evaluating vagal mechanoreceptor physiology. Brain Res Rev 34:1–26PubMedCrossRefGoogle Scholar
  199. Pintelon I, Brouns I, Van Genechten J, Scheuermann DW, Timmermans J-P, Adriaensen D (2003) Pulmonary expression of the vesicular acetylcholine transporter with special reference to neuroepithelial bodies. Auton Neurosci 106:47Google Scholar
  200. Pintelon I, Brouns I, De Proost I, Van Meir F, Timmermans J-P, Adriaensen D (2007) Sensory receptors in the visceral pleura. Neurochemical coding and live staining in whole mounts. Am J Respir Cell Mol Biol 36:541–551PubMedCrossRefGoogle Scholar
  201. Plopper CG, Suverkropp C, Morin D, Nishio S, Buckpitt A (1992) Relationship of cytochrome P-450 activity to Clara cell cytotoxicity. I. Histopathologic comparison of the respiratory tract of mice, rats and hamsters after parenteral administration of naphthalene. J Pharmacol Exp Ther 261:353–363PubMedGoogle Scholar
  202. Plummer HKI, Sheppard B, Schuller HM (2000) Interaction of tobacco-specific toxicants with nicotinic cholinergic regulation of pulmonary neuroendocrine cells: implications for pediatric lung disease. Exp Lung Res 26:121–135PubMedCrossRefGoogle Scholar
  203. Polak JM, Becker KL, Cutz E, Gail DB, Goniakowska-Witalinska L, Gosney JR, Lauweryns JM, Linnoila I, McDowell EM, Miller YE (1993) Lung endocrine cell markers, peptides, and amines. Anat Rec 236:169–171PubMedCrossRefGoogle Scholar
  204. Porzionato A, Macchi V, Parenti A, Matturri L, De CR (2008) Peripheral chemoreceptors: postnatal development and cytochemical findings in Sudden Infant Death Syndrome. Histol Histopathol 23:351–365PubMedGoogle Scholar
  205. Powley TL, Phillips RJ (2011) Vagal intramuscular array afferents form complexes with interstitial cells of Cajal in gastrointestinal smooth muscle: analogues of muscle spindle organs? Neuroscience 186:188–200PubMedCrossRefGoogle Scholar
  206. Qing X, Svaren J, Keith IM (2001) mRNA expression of novel CGRP1 receptors and their activity-modifying proteins in hypoxic rat lung. Am J Physiol Lung Cell Mol Physiol 280:L547–L554PubMedGoogle Scholar
  207. Raab M, Neuhuber WL (2003) Vesicular glutamate transporter 2 immunoreactivity in putative vagal mechanosensor terminals of mouse and rat esophagus: indication of a local effector function. Cell Tissue Res 312:141–148PubMedGoogle Scholar
  208. Raab M, Neuhuber WL (2007) Glutamatergic functions of primary afferent neurons with special emphasis on vagal afferents. Int Rev Cytol 256:223–275PubMedCrossRefGoogle Scholar
  209. Raab M, Wörl J, Brehmer A, Neuhuber WL (2003) Reduction of NT-3 or TrkC results in fewer putative vagal mechanoreceptors in the mouse esophagus. Auton Neurosci 108:22–31PubMedCrossRefGoogle Scholar
  210. Racké K, Matthiesen S (2004) The airway cholinergic system: physiology and pharmacology. Pulm Pharmacol Ther 17:181–198PubMedCrossRefGoogle Scholar
  211. Rawlins EL, Hogan BL (2006) Epithelial stem cells of the lung: privileged few or opportunities for many? Development 133:2455–2465PubMedCrossRefGoogle Scholar
  212. Redecker P, Grube D, Jahn R (1990) Immunohistochemical localization of synaptophysin (p38) in the pineal gland of the Mongolian gerbil (Meriones unguiculatus). Anat Embryol 181:433–440PubMedCrossRefGoogle Scholar
  213. Redick ML, Hung K-S (1984) Quantitation of pulmonary neuroepithelial bodies in pre- and postnatal rabbits. Cell Tissue Res 238:583–587PubMedCrossRefGoogle Scholar
  214. Rehm H, Wiedenmann B, Betz H (1986) Molecular characerization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J 5:535–541PubMedGoogle Scholar
  215. Reissig A, Kroegel C (2003) Transthoracic ultrasound of lung and pleura in the diagnosis of pulmonary embolism: a novel non-invasive bedside approach. Respiration 70:441–452PubMedCrossRefGoogle Scholar
  216. Reynolds SD, Giangreco A, Power JH, Stripp BR (2000a) Neuroepithelial bodies of pulmonary airways serve as a reservoir of progenitor cells capable of epithelial regeneration. Am J Pathol 156:269–278PubMedCrossRefGoogle Scholar
  217. Reynolds SD, Hong KU, Giangreco A, Mango GW, Guron C, Morimoto Y, Stripp BR (2000b) Conditional clara cell ablation reveals a self-renewing progenitor function of pulmonary neuroendocrine cells. Am J Physiol Lung Cell Mol Physiol 278:L1256–L1263PubMedGoogle Scholar
  218. Reynolds SD, Reynolds PR, Pryhuber GS, Finder JD, Stripp BR (2002) Secretoglobins SCGB3A1 and SCGB3A2 define secretory cell subsets in mouse and human airways. Am J Respir Crit Care Med 166:1498–1509PubMedCrossRefGoogle Scholar
  219. Riccio MM, Kummer W, Biglari B, Myers AC, Undem BJ (1996) Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways. J Physiol Lond 496:521–530Google Scholar
  220. Rodrigo J, Hernansez CJ, Vidal MA, Pedrosa JA (1975) Vegetative innervation of the esophagus. II. Intraganglionic laminar endings. Acta Anat 92:79–100PubMedCrossRefGoogle Scholar
  221. Roncalli M, Springall DR, Maggioni M, Moradoghli-Haftvani A, Winter RJD, Zhao L, Coggi G, Polak JM (1993) Early changes in the calcitonin gene-related peptide (CGRP) content of pulmonary endocrine cells concomitant with vascular remodeling in the hypoxic rat. Am J Respir Cell Mol Biol 9:467–474PubMedGoogle Scholar
  222. Rong W, Gourine AV, Cockayne DA, Xiang Z, Ford AP, Spyer KM, Burnstock G (2003) Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia. J Neurosci 23:11315–11321PubMedGoogle Scholar
  223. Roomans GM (2010) Tissue engineering and the use of stem/progenitor cells for airway epithelium repair. Eur Cell Mater 19:284–299PubMedGoogle Scholar
  224. Rusch VW (1990) Diagnosis and treatment of pleural mesothelioma. Semin Surg Oncol 6:279–285PubMedCrossRefGoogle Scholar
  225. Salathe M, Lipson EJ, Ivonnet PI, Bookman RJ (1997) Muscarinic signaling in ciliated tracheal epithelial cells: dual effects on Ca2+ and ciliary beating. Am J Physiol 272:L301–L310PubMedGoogle Scholar
  226. Sant’Ambrogio G (1982) Information arising from the tracheobronchial tree of mammals. Physiol Rev 62:531–569PubMedGoogle Scholar
  227. Sartelet H, Maouche K, Totobenazara JL, Petit J, Burlet H, Monteau M, Tournier JM, Birembaut P (2008) Expression of nicotinic receptors in normal and tumoral pulmonary neuroendocrine cells (PNEC). Pathol Res Pract 204:891–898PubMedCrossRefGoogle Scholar
  228. Schäfer MKH, Weihe E, Varoqui H, Eiden LE, Erickson JD (1994) Distribution of the vesicular acetylcholine transporter (VAChT) in the central and peripheral nervous systems of the rat. J Mol Neurosci 5:1–26PubMedCrossRefGoogle Scholar
  229. Schelegle ES (2003) Functional morphology and physiology of slowly adapting pulmonary stretch receptors. Anat Rec 270:11–16CrossRefGoogle Scholar
  230. Scheuermann DW (1987) Morphology and cytochemistry of the endocrine epithelial system in the lung. Int Rev Cytol 106:35–88PubMedCrossRefGoogle Scholar
  231. Scheuermann DW, Adriaensen D, Timmermans J-P, De Groodt-Lasseel MH (1992) Comparative histological overview of the chemical coding of the pulmonary neuroepithelial endocrine system in health and disease. Eur J Morphol 30:101–112PubMedGoogle Scholar
  232. Schuil PJ, Rosmalen JG, Graamans K, Huizing EH (1995) Calcitonin gene-related peptide in vitro stimulation of ciliary beat in human upper respiratory cilia. Eur Arch Otorhinolaryngol 252:462–464PubMedCrossRefGoogle Scholar
  233. Schuller HM, Witschi HP, Nylen E, Joshi PA, Correa E, Becker KL (1990) Pathobiology of lung tumors induced in hamsters by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and the modulating effect of hyperoxia. Cancer Res 50:1960–1965PubMedGoogle Scholar
  234. Schuller HM, Jull BA, Sheppard BJ, Plummer HK (2000) Interaction of tobacco-specific toxicants with the neuronal alpha(7) nicotinic acetylcholine receptor and its associated mitogenic signal transduction pathway: potential role in lung carcinogenesis and pediatric lung disorders. Eur J Pharmacol 393:265–277PubMedCrossRefGoogle Scholar
  235. Schuller HM, Plummer HK III, Jull BA (2003) Receptor-mediated effects of nicotine and its nitrosated derivative NNK on pulmonary neuroendocrine cells. Anat Rec 270A:51–58CrossRefGoogle Scholar
  236. Schwaller B (2010) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2:a004051PubMedCrossRefGoogle Scholar
  237. Sekhon HS, Jia Y, Raab R, Kuryatov A, Pankow JF, Whitsett JA, Lindstrom J, Spindel ER (1999) Prenatal nicotine increases pulmonary a7 nicotinic receptor expression and alters fetal lung development in monkeys. J Clin Invest 103:637–647PubMedCrossRefGoogle Scholar
  238. Seldeslagh KA, Lauweryns JM (1997) NCAM expression in the pulmonary neural and diffuse neuroendocrine cell system. Microsc Res Tech 37:69–76PubMedCrossRefGoogle Scholar
  239. Seuwen K, Pouyssegur J (1990) Serotonin as a growth factor. Biochem Pharmacol 39(6):985–990PubMedCrossRefGoogle Scholar
  240. Shimosegawa T, Said SI (1991a) Co-occurrence of immunoreactive calcitonin and calcitonin gene-related peptide in neuroendocrine cells of rat lungs. Cell Tissue Res 264:555–561PubMedCrossRefGoogle Scholar
  241. Shimosegawa T, Said SI (1991b) Pulmonary calcitonin gene-related peptide immunoreactivity: nerve-endocrine cell interrelationships. Am J Respir Cell Mol Biol 4:126–134PubMedGoogle Scholar
  242. Snyder JC, Teisanu RM, Stripp BR (2009) Endogenous lung stem cells and contribution to disease. J Pathol 217:254–264PubMedCrossRefGoogle Scholar
  243. Sonstegard KS, Mailman RB, Cheek JM, Tomlin TE, DiAugustini RP (1982) Morphological and cytochemical characterization of neuroepithelial bodies in fetal rabbit lung. I. Studies of isolated neuroepithelial bodies. Exp Lung Res 3:349–377PubMedCrossRefGoogle Scholar
  244. Sorhaug S, Steinshamn S, Munkvold B, Waldum HL (2008) Release of neuroendocrine products in the pulmonary circulation during intermittent hypoxia in isolated rat lung. Respir Physiol Neurobiol 162:1–7PubMedCrossRefGoogle Scholar
  245. Sorokin SP, Hoyt RF (1989) Neuroepithelial bodies and solitary small-granule cells. In: Massaro D (ed) Lung cell biology. Marcel Dekker, New York, pp 191–344Google Scholar
  246. Sorokin SP, Hoyt RF (1990) On the supposed function of neuroepithelial bodies in adult mammalian lungs. News Physiol Sci 5:89–95Google Scholar
  247. Sorokin SP, Hoyt RF (1993) Proceedings of workshop on pulmonary neuroendocrine cells in health and disease. Anat Rec 236:1–256CrossRefGoogle Scholar
  248. Sorokin SP, Hoyt RF, Shaffer MJ (1997) Ontogeny of neuroepithelial bodies: correlations with mitogenesis and innervation. Microsc Res Tech 37:43–61PubMedCrossRefGoogle Scholar
  249. Soukhova G, Wang Y, Ahmed M, Walker JF, Yu J (2003) Bradykinin stimulates respiratory drive by activating pulmonary sympathetic afferents in the rabbit. J Appl Physiol 95:241–249PubMedGoogle Scholar
  250. Speirs V, Cutz E (1993) An overview of culture and isolation methods suitable for in vitro studies on pulmonary neuroendocrine cells. Anat Rec 236:35–40PubMedCrossRefGoogle Scholar
  251. Speirs V, Wang YV, Yeger H, Cutz E (1992) Isolation and culture of neuroendocrine cells from fetal rabbit lung using immunomagnetic techniques. Am J Respir Cell Mol Biol 6:63–67PubMedGoogle Scholar
  252. Spencer H, Leof D (1964) The innervation of human lung. J Anat 98:599–609PubMedGoogle Scholar
  253. Springall DR, Polak JM (1993) Calcitonin gene-related peptide and pulmonary hypertension in experimental hypoxia. Anat Rec 236:96–104PubMedCrossRefGoogle Scholar
  254. Springall DR, Polak JM (1997) Quantitative microscopical methods for the identification and localisation of nerves and neuroendocrine cell markers in mammalian lung. Microsc Res Tech 37:92–100PubMedCrossRefGoogle Scholar
  255. Springall DR, Cadieux A, Oliveira H, Su H, Rayston D, Polak JM (1987) Retrograde tracing shows that CGRP-immunoreactive nerves of rat trachea and lung originate from vagal and dorsal root ganglia. J Auton Nerv Syst 20:155–166PubMedCrossRefGoogle Scholar
  256. Springer J, Amadesi S, Trevisani M, Harrison S, Dinh QT, McGregor GP, Fisher A, Geppetti P, Groneberg DA (2004) Effects of alpha calcitonin gene-related peptide in human bronchial smooth muscle and pulmonary artery. Regul Pept 118:127–134PubMedCrossRefGoogle Scholar
  257. Stahlman MT, Gray ME (1984) Ontogeny of neuroendocrine cells in human fetal lung. I. An electron microscopic study. Lab Invest 51:449–463PubMedGoogle Scholar
  258. Stahlman MT, Gray ME (1997) Immunogold EM localization of neurochemicals in human pulmonary neuroendocrine cells. Microsc Res Tech 37:77–91PubMedCrossRefGoogle Scholar
  259. Stahlman MT, Jones M, Gray ME, Kasselberg AG, Vaughn WK (1987) Ontogeny of neuroendocrine cells in human fetal lung. III. An electron microscopic immunohistochemical study. Lab Invest 56:629–641PubMedGoogle Scholar
  260. Stripp BR, Maxson K, Mera R, Singh G (1995) Plasticity of airway cell proliferation and gene expression after acute naphthalene injury. Am J Physiol 269:L791–L799PubMedGoogle Scholar
  261. Sullivan JP, Minna JD, Shay JW (2010) Evidence for self-renewing lung cancer stem cells and their implications in tumor initiation, progression, and targeted therapy. Cancer Metastasis Rev 29:61–72PubMedCrossRefGoogle Scholar
  262. Tabassian AR, Nylen ES, Giron AE et al (1988) Evidence for cigarette smoke induced calcitonin secretion from lungs of man and hamster. Life Sci 42:2323–2329PubMedCrossRefGoogle Scholar
  263. Tabassian AR, Snider RH, Nylen ES, Cassidy MM, Becker KL (1993) Heterogeneity studies of hamster calcitonin following acute exposure to cigarette smoke: evidence for a monomeric secretion. Anat Rec 236:253–256PubMedCrossRefGoogle Scholar
  264. Takamori S (2006) VGLUTs: ‘Exciting’ times for glutamatergic research ? Neurosci Res 55:343–351PubMedCrossRefGoogle Scholar
  265. Takamori S, Rhee JS, Rosenmund C, Jahn R (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194PubMedCrossRefGoogle Scholar
  266. Takemura M, Quarcoo D, Niimi A, Dinh QT, Geppetti P, Fischer A, Chung KF, Groneberg DA (2008) Is TRPV1 a useful target in respiratory diseases? Pulm Pharmacol Ther 21:833–839PubMedCrossRefGoogle Scholar
  267. Tamaoki J, Kanemura T, Kobayashi K, Sakai N, Takizawa T (1989) Effects of calcitonin gene-related peptide on airway epithelial functions in dogs. Peptides 10:1007–1011PubMedCrossRefGoogle Scholar
  268. Terada M, Iwanaga T, Takahashi-Iwanaga H, Adachi I, Arakawa M, Fujita T (1992) Calcitonin gene-related peptide (CGRP)-immunoreactive nerves in the tracheal epithelium of rats: an immunohistochemical study by means of whole mount preparations. Arch Histol Cytol 55:219–233PubMedCrossRefGoogle Scholar
  269. Tjen-A-Looi S, Kraiczi H, Ekman R, Keith IM (1998) Sensory CGRP depletion by capsaicin exacerbates hypoxia-induced pulmonary hypertension in rats. Regul Pept 74:1–10PubMedCrossRefGoogle Scholar
  270. Tsukiji J, Sango K, Udaka N, Kageyama H, Ito T, Saito H, Horie H, Inoue S, Kitamura H, Hagiwara E, Ikeda H, Okubo T, Ishigatsubo Y (2004) Long-term induction of beta-CGRP mRNA in rat lungs by allergic inflammation. Life Sci 76:163–177PubMedCrossRefGoogle Scholar
  271. Tsutsumi Y, Osamura RY, Watanabe K, Yanaihara N (1983) Simultaneous immunohistochemical localization of gastrin releasing peptide (GRP) and calcitonin (CT) in human bronchial endocrine-type cells. Virchows Arch A Pathol Anat Histopathol 400:163–171PubMedCrossRefGoogle Scholar
  272. Uddman R, Luts A, Sundler F (1985) Occurrence and distribution of calcitonin gene-related peptide in the mammalian respiratory tract and middle ear. Cell Tissue Res 241:551–555PubMedCrossRefGoogle Scholar
  273. Undem BJ, Chuaychoo B, Lee M-G, Weinreich D, Myers AC, Kollarik M (2004) Subtypes of vagal afferent C-fibres in guinea-pig lungs. J Physiol 556(3):905–917PubMedCrossRefGoogle Scholar
  274. Urban C, Nirenberg A, Caparros B, Anac S, Cacavio A, Rosen G (1983) Chemical pleuritis as the cause of acute chest pain following high-dose methotrexate treatment. Cancer 51:34–37PubMedCrossRefGoogle Scholar
  275. Van Genechten J, Brouns I, Scheuermann DW, Timmermans J-P, Adriaensen D (2003) Reduced number of intrinsic pulmonary nitrergic neurons in Fawn-Hooded rats as compared to control rat strains. Anat Rec 272A:446–453CrossRefGoogle Scholar
  276. Van Genechten J, Brouns I, Burnstock G, Timmermans J-P, Adriaensen D (2004) Quantification of neuroepithelial bodies and their innervation in Fawn-Hooded and Wistar rat lungs. Am J Respir Cell Mol Biol 30:20–30PubMedCrossRefGoogle Scholar
  277. Van Lommel A, Lauweryns JM (1993a) Neuroepithelial bodies in the Fawn Hooded rat lung: morphological and neuroanatomical evidence for a sensory innervation. J Anat 183:553–566PubMedGoogle Scholar
  278. Van Lommel AT, Lauweryns JM (1993b) Ultrastructure and innervation of neuroepithelial bodies in the lungs of newborn cats. Anat Rec 236:181–190PubMedCrossRefGoogle Scholar
  279. Van Lommel A, Lauweryns JM (1997) Postnatal development of the pulmonary neuroepithelial bodies in various animal species. J Auton Nerv Syst 65:17–24PubMedCrossRefGoogle Scholar
  280. Van Lommel A, Lauweryns JM, De Leyn P, Wouters P, Schreinemakers H, Lerut T (1995) Pulmonary neuroepithelial bodies in neonatal and adult dogs: histochemistry, ultrastructure, and effects of unilateral hilar lung denervation. Lung 173:13–23PubMedCrossRefGoogle Scholar
  281. Van Lommel A, Lauweryns JM, Berthoud H-R (1998) Pulmonary neuroepithelial bodies are innervated by vagal afferent nerves: an investigation with in vivo anterograde Dil tracing and confocal microscopy. Anat Embryol 197:325–330PubMedCrossRefGoogle Scholar
  282. Van Lommel A, Bolle T, Fannes W, Lauweryns JM (1999) The pulmonary neuroendocrine system: the past decade. Arch Histol Cytol 62:1–16PubMedCrossRefGoogle Scholar
  283. Van Lommel A, Bollé T, Hellings P (2009) Pulmonary neuroepithelial bodies as hypothetical immunomodulators: some new findings and a review of the literature. In: Zaccone G, Cutz E, Adriaensen D, Nurse CA, Mauceri A (eds) Airway chemoreceptors in the vertebrates. Structure, evolution and function. Science Publishers, Enfield, New Hampshire, pp 311–330CrossRefGoogle Scholar
  284. Van Ranst L (1989) Immunocytochemisch onderzoek van de intrapulmonale neuroepitheliale lichamen en hun bezenuwing bij verschillende zoogdieren. Doctoraatsproefschrift, Katholieke Universiteit LeuvenGoogle Scholar
  285. Verástegui C, Fernandez-Vivero J, Prada A, Rodriguez F, Romero A, GonzalezMoreno M, deCastro JM (1997) Presence and distribution of 5HT-, VIP-, NPY-, and SP-immunoreactive structures in adult mouse lung. Histol Histopathol 12:909–918PubMedGoogle Scholar
  286. Vicaut E, Laemmel E, Stucker O (2000) Impact of serotonin on tumour growth. Ann Med 32:187–194PubMedCrossRefGoogle Scholar
  287. von Düring M, Andres KH, Iravani J (1974) The fine structure of the pulmonary stretch receptor in the rat. Z Anat Entwickl Gesch 143:215–222CrossRefGoogle Scholar
  288. Walsh C, McLelland J (1978) The development of the epithelium and its innervation in the avian extra-pulmonary respiratory tract. J Anat 125:171–182PubMedGoogle Scholar
  289. Wang Y-Y, Cutz E (1993) Localization of cholecystokinin-like peptide in neuroendocrine cells of mammalian lungs: a light and electron microscopic immunohistochemical study. Anat Rec 236:198–205PubMedCrossRefGoogle Scholar
  290. Wang ZJ, Neuhuber WL (2003) Intraganglionic laminar endings in the rat esophagus contain purinergic P2X2 and P2X3 receptor immunoreactivity. Anat Embryol 207:363–371PubMedCrossRefGoogle Scholar
  291. Wang Y-F, Yu J (2004) Structural survey of airway sensory receptors in rabbit using confocal microscopy. Acta Physiologica Sinica 56:119–129PubMedGoogle Scholar
  292. Wang D, Yeger H, Cutz E (1996a) Expression of gastrin-releasing peptide receptor gene in developing lung. Am J Respir Cell Mol Biol 14:409–416PubMedGoogle Scholar
  293. Wang D, Youngson CR, Wong V, Yeger H, Dinauer MC, Vega-Saenz ME, Rudy B, Cutz E (1996b) NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines. Proc Natl Acad Sci USA 93:13182–13187PubMedCrossRefGoogle Scholar
  294. Wasano K (1977) Neuroepithelial bodies in the lung of rat and mouse. Arch Histol Jpn 40:207–219PubMedGoogle Scholar
  295. Wasano K, Yamamoto T (1978) Monoamine-containing granulated cells in the frog lung. Cell Tissue Res 193:201–209PubMedCrossRefGoogle Scholar
  296. Wasano K, Yamamoto T (1981) A scanning and transmission electron-microscopic study on neuroepithelial bodies in the neonatal mouse lung. Cell Tissue Res 216:481–490PubMedCrossRefGoogle Scholar
  297. Webber SE, Lim JC, Widdicombe JG (1991) The effects of calcitonin gene-related peptide on submucosal gland secretion and epithelial albumin transport in the ferret trachea in vitro. Br J Pharmacol 102:79–84PubMedGoogle Scholar
  298. Wedekind C (1997) Receptive properties of primary afferent fibers from rabbit pleura, in vitro. Somatosens Mot Res 14:229–236PubMedCrossRefGoogle Scholar
  299. Weichselbaum M, Everett AW, Sparrow MP (1996) Mapping the innervation of the bronchial tree in fetal and postnatal pig lung using antibodies to PGP9.5 and SV2. Am J Respir Cell Mol Biol 15:703–710PubMedGoogle Scholar
  300. Wharton J, Polak JM, Bloom SR, Ghatei MA, Solcia E, Brown MR, Pearse AG (1978) Bombesin-like immunoreactivity in the lung. Nature 273:769–770PubMedCrossRefGoogle Scholar
  301. Widdicombe JG (2001) Airway receptors. Respir Physiol 125:3–15PubMedCrossRefGoogle Scholar
  302. Widdicombe J (2006) Reflexes from the lungs and airways: historical perspective. J Appl Physiol 101:628–634PubMedCrossRefGoogle Scholar
  303. Widdicombe J (2009) Lung afferent activity: implications for respiratory sensation. Respir Physiol Neurobiol 167:2–8PubMedCrossRefGoogle Scholar
  304. Widdicombe J, Nadel JA (1963a) Reflex effects of lung inflation on thracheal volume. J Appl Physiol 18:681–686PubMedGoogle Scholar
  305. Widdicombe JG, Nadel JA (1963b) Airway volume, airway resistance, and work and force of breathing: theory. J Appl Physiol 18:863–868PubMedGoogle Scholar
  306. Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: a marker for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 83:3500–3504PubMedCrossRefGoogle Scholar
  307. Will JA, Keith IM, Buckner CK, Chacko J, Olson EBJ, Weir EK (1984) Serotonin and the pulmonary circulation. In: Becker KL, Gazdar AF (eds) The endocrine lung in health and disease. WB Saunders, Philadelphia, pp 137–154Google Scholar
  308. Wong AP, Keating A, Waddell TK (2009) Airway regeneration: the role of the Clara cell secretory protein and the cells that express it. Cytotherapy 11:676–687PubMedCrossRefGoogle Scholar
  309. Wu S-X, Koshimizu Y, Feng Y-P, Okamoto K, Fujiyama F, Hioki H, Li Y-Q, Kaneko T, Mizuno N (2004) Vesicular glutamate transporter immunoreactivity in the central and peripheral endings of muscle-spindle afferents. Brain Res 1011:247–251PubMedCrossRefGoogle Scholar
  310. Yabumoto Y, Watanabe M, Ito Y, Maemura K, Otsuki Y, Nakamura Y, Yanagawa Y, Obata K, Watanabe K (2008) Expression of GABAergic system in pulmonary neuroendocrine cells and airway epithelial cells in GAD67-GFP knock-in mice. Med Mol Morphol 41:20–27PubMedCrossRefGoogle Scholar
  311. Yamamoto Y, Atoji Y, Suzuki Y (1999) Calretinin immunoreactive nerve endings in the trachea and bronchi of the rat. J Vet Med Sci 61:267–269PubMedCrossRefGoogle Scholar
  312. Yeger H, Pan J, Fu XW, Bear C, Cutz E (2001) Expression of CFTR and Cl- conductances in cells of pulmonary neuroepithelial bodies. Am J Physiol Lung Cell Mol Physiol 281:L713–L721PubMedGoogle Scholar
  313. Yoo SH, Huh YH, Hur YS (2010) Inositol 1,4,5-Trisphosphate receptor in chromaffin secretory granules and its relation to chromogranins. Cell Mol Neurobiol 30:1155–1161PubMedCrossRefGoogle Scholar
  314. Youngson C, Nurse C, Yeger H, Cutz E (1993) Oxygen sensing in airway chemoreceptors. Nature 365:153–155PubMedCrossRefGoogle Scholar
  315. Youngson C, Nurse C, Yeger H, Curnutte JT, Vollmer C, Wong V, Cutz E (1997) Immunocytochemical localization on O2-sensing protein (NADPH oxidase) in chemoreceptor cells. Microsc Res Tech 37:101–106PubMedCrossRefGoogle Scholar
  316. Yu J (2009) Airway receptors and their reflex function. In: Gonzalez C, Peers C, Nurse CA (eds) Arterial Chemoreceptors. pp 411–420Google Scholar
  317. Yu J, Wang YF, Zhang JW (2003) Structure of slowly adapting pulmonary stretch receptors in the lung periphery. J Appl Physiol 95:385–393PubMedGoogle Scholar
  318. Yu J, Zhang JW, Wang YF, Fan F, Yu A (2004) Neuroepithelial bodies not connected to pulmonary slowly adapting stretch receptors. Respir Physiol Neurobiol 144:1–14PubMedCrossRefGoogle Scholar
  319. Yu J, Lin XS, Zhang JWWJ (2006) Pulmonary nociceptors are potentially connected with neuroepithelial bodies. In: The arterial chemoreceptors. Springer, pp 301–306.Google Scholar
  320. Zhang JW, Walker JF, Guardiola J, Yu J (2006) Pulmonary sensory and reflex responses in the mouse. J Appl Physiol 101:986–992PubMedCrossRefGoogle Scholar
  321. Zhao H, Sprunger KL, Simasko MS (2010) Expression of transient receptor potential channels and two-pore potassium channels in subtypes of vagal afferent neurons in rat. Am J Physiol Gastrointest Liver Physiol 298:212–221CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Inge Brouns
    • 1
    Email author
  • Isabel Pintelon
    • 1
  • Jean-Pierre Timmermans
    • 2
  • Dirk Adriaensen
    • 2
  1. 1.Department of Veterinary Sciences Laboratory of Cell Biology and HistologyUniversity of AntwerpAntwerpBelgium
  2. 2.Department of Veterinary Sciences Laboratory of Cell Biology and HistologyUniversity of AntwerpAntwerpenBelgium

Personalised recommendations