Advertisement

The Neurochemical Coding of Airway Afferents

  • Inge BrounsEmail author
  • Isabel Pintelon
  • Jean-Pierre Timmermans
  • Dirk Adriaensen
Chapter
Part of the Advances in Anatomy, Embryology and Cell Biology book series (ADVSANAT, volume 211)

Abstract

The “neurochemical coding” is the combination of chemical features (e.g., structural proteins, molecular receptors, neurotransmitter content) that defines a neuronal cell type or certain nerve fibre population. With the advances of immunohistochemistry, in combination with confocal microscopy, intrapulmonary airway sensory nerve fibres and the concomitant airway receptor end-structures can now be examined in detail and evaluated objectively (Yu 2009). Moreover, application of these techniques potentially allows to clearly evaluate the relationship of primary afferents with associated tissues and cells, and to get more profound insights into their potential functions.

Keywords

Nerve Terminal Visceral Pleura Sensory Nerve Ending Receptor Terminal Laminar Ending 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Banks RW, Bewick GS, Reid B, Richardson C (2002) Evidence for activity-dependent modulation of sensory-terminal excitability in spindles by glutamate release from synaptic-like vesicles. Adv Exp Med Biol 508:13–18PubMedCrossRefGoogle Scholar
  2. Bewick GS, Reid B, Richardson C, Banks RW (2005) Autogenic modulation of mechanoreceptor excitability by glutamate release from synaptic-like vesicles: evidence from the rat muscle spindle primary sensory ending. J Physiol 562:381–394PubMedCrossRefGoogle Scholar
  3. Brouns I, Adriaensen D, Burnstock G, Timmermans J-P (2000) Intraepithelial vagal sensory nerve terminals in rat pulmonary neuroepithelial bodies express P2X3 receptors. Am J Respir Cell Mol Biol 23:52–61PubMedGoogle Scholar
  4. Brouns I, De Proost I, Pintelon I, Timmermans J-P, Adriaensen D (2006a) Sensory receptors in the airways: neurochemical coding of smooth muscle-associated airway receptors and pulmonary neuroepithelial body innervation. Auton Neurosci 126–127:307–319PubMedCrossRefGoogle Scholar
  5. Brouns I, Pintelon I, De Proost I, Alewaters R, Timmermans J-P, Adriaensen D (2006b) Neurochemical characterisation of sensory receptors in airway smooth muscle: comparison with pulmonary neuroepithelial bodies. Histochem Cell Biol 125:351–367PubMedCrossRefGoogle Scholar
  6. Brouns I, Oztay F, Pintelon I, De Proost I, Lembrechts R, Timmermans J-P, Adriaensen D (2009b) Neurochemical pattern of the complex innervation of neuroepithelial bodies in mouse lungs. Histochem Cell Biol 131:55–74PubMedCrossRefGoogle Scholar
  7. Burnstock G (2009) Purines and sensory nerves. Handb Exp Pharmacol (194):333–392Google Scholar
  8. Day IN, Thompson RJ (2010) UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog Neurobiol 90:327–362PubMedCrossRefGoogle Scholar
  9. Dobretsov M, Stimers JR (2005) Neuronal function and alpha3 isoform of the Na/K-ATPase. Front Biosci 10:2373–2396PubMedCrossRefGoogle Scholar
  10. Dobretsov M, Hastings SL, Sims TJ, Stimers JR, Romanovsky D (2003) Stretch receptor-associated expression of alpha 3 isoform of the Na+, K+-ATPase in rat peripheral nervous system. Neuroscience 116:1069–1080PubMedCrossRefGoogle Scholar
  11. Duc C, Barakat-Walter I, Droz B (1994) Innervation of putative rapidly adapting mechanorecptors by calbindin- and calretinin-immunoreactive primary sensory neurons in the rat. Eur J Neurosci 6:264–271PubMedCrossRefGoogle Scholar
  12. Dütsch M, Eichhorn U, Wörl J, Wank M, Berthoud H-R, Neuhuber WL (1998) Vagal and spinal afferent innervation of the rat esophagus: a combined retrograde tracing and immunocytochemical study with special emphasis on calcium- binding proteins. J Comp Neurol 398:289–307PubMedCrossRefGoogle Scholar
  13. Haxhiu MA, Kc P, Moore CT, Acquah SS, Wilson CG, Zaida SI, Massari VJ, Ferguson DG (2005) Brain stem excitatory and inhibitory signaling pathways regulating bronchoconstrictive responses. J Appl Physiol 98:1961–1982PubMedCrossRefGoogle Scholar
  14. Kuramoto H, Kuwano R (1994) Immunohistochemical demonstration of calbindin-containing nerve endings in the rat esophagus. Cell Tissue Res 278:57–64PubMedCrossRefGoogle Scholar
  15. Kwong K, Kollarik M, Nassenstein C, Ru F, Undem BJ (2008) P2X2 receptors differentiate placodal versus neural crest C-fiber phenotypes innervating guinea pig lungs and esophagus. Am J Physiol Lung Cell Mol Physiol 295:L858–L865PubMedCrossRefGoogle Scholar
  16. Lachamp P, Crest M, Kessler JP (2006) Vesicular glutamate transporters type 1 and 2 expression in axon terminals of the rat nucleus of the solitary tract. Neuroscience 137:73–81PubMedCrossRefGoogle Scholar
  17. Lawrence AJ (1995) Neurotransmitter mechanisms of rat vagal afferent neurons. Clin Exp Pharmacol Physiol 22:869–873PubMedCrossRefGoogle Scholar
  18. Lee I, Gould VE, Moll R, Wiedenmann B, Franke WW (1987) Synatophysin expressed in the bronchopulmonary tract: neuroendocrine cells, neuroepithelial bodies, and neuroendocrine neoplasms. Differentiation 34:115–125PubMedCrossRefGoogle Scholar
  19. Lembrechts R, Pintelon I, Schnorbusch K, Timmermans J-P, Adriaensen D, Brouns I (2011) Expression of mechanogated Two-pore-domain potassium channels in mouse lungs: special reference to mechanosensory airway receptors. Histochem Cell BiolGoogle Scholar
  20. Nassenstein C, Taylor-Clark TE, Myers AC, Ru F, Nandigama R, Bettner W, Undem BJ (2010) Phenotypic distinctions between neural crest and placodal derived vagal C-fibres in mouse lungs. J Physiol 588:4769–4783PubMedCrossRefGoogle Scholar
  21. Ochi K, Wakisaka S, Youn SH, Hanada K, Maeda T (1997a) Calretinin-like immunoreactivity in the Ruffini endings, slowly adapting mechanoreceptors, of the periodontal ligament of the rat incisor. Brain Res 769:183–187PubMedCrossRefGoogle Scholar
  22. Ochi K, Wakisaka S, Youn SH, Hanada K, Maeda T (1997b) Immunohistochemical localization of calbindin D28k in the periodontal Ruffini endings of rat incisors. Neurosci Lett 228:195–198PubMedCrossRefGoogle Scholar
  23. Pan J, Yeger H, Cutz E (2004) Innervation of pulmonary neuroendocrine cells and neuroepithelial bodies in developing rabbit lung. J Histochem Cytochem 52:379–389PubMedCrossRefGoogle Scholar
  24. Pan J, Luk C, Kent G, Cutz E, Yeger H (2006a) Pulmonary neuroendocrine cells, airway innervation, and smooth muscle are altered in Cftr null mice. Am J Respir Cell Mol Biol 35:320–326PubMedCrossRefGoogle Scholar
  25. Pintelon I, Brouns I, De Proost I, Van Meir F, Timmermans J-P, Adriaensen D (2007) Sensory receptors in the visceral pleura. Neurochemical coding and live staining in whole mounts. Am J Respir Cell Mol Biol 36:541–551PubMedCrossRefGoogle Scholar
  26. Raab M, Neuhuber WL (2003) Vesicular glutamate transporter 2 immunoreactivity in putative vagal mechanosensor terminals of mouse and rat esophagus: indication of a local effector function. Cell Tissue Res 312:141–148PubMedGoogle Scholar
  27. Schwaller B (2009) The continuing disappearance of “pure” Ca2+ buffers. Cell Mol Life Sci 66:275–300PubMedCrossRefGoogle Scholar
  28. Takamori S (2006) VGLUTs: ‘Exciting’ times for glutamatergic research ? Neurosci Res 55:343–351PubMedCrossRefGoogle Scholar
  29. Taylor-Clark T, Undem BJ (2006) Transduction mechanisms in airway sensory nerves. J Appl Physiol 101:950–959PubMedCrossRefGoogle Scholar
  30. Wang YF, Yu J (2002) Na+/K+-ATPase as a marker for detecting pulmonary sensory receptors. Sheng Li Xue Bao 54:390–394PubMedGoogle Scholar
  31. Wang Y-F, Yu J (2004) Structural survey of airway sensory receptors in rabbit using confocal microscopy. Acta Physiologica Sinica 56:119–129PubMedGoogle Scholar
  32. Yamamoto Y, Atoji Y, Suzuki Y (1999) Calretinin immunoreactive nerve endings in the trachea and bronchi of the rat. J Vet Med Sci 61:267–269PubMedCrossRefGoogle Scholar
  33. Yu J (2009) Airway receptors and their reflex function. In: Gonzalez C, Peers C, Nurse CA (eds) Arterial Chemoreceptors. pp 411–420Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Inge Brouns
    • 1
    Email author
  • Isabel Pintelon
    • 1
  • Jean-Pierre Timmermans
    • 2
  • Dirk Adriaensen
    • 2
  1. 1.Department of Veterinary Sciences Laboratory of Cell Biology and HistologyUniversity of AntwerpAntwerpBelgium
  2. 2.Department of Veterinary Sciences Laboratory of Cell Biology and HistologyUniversity of AntwerpAntwerpenBelgium

Personalised recommendations