Skip to main content

Long-Distance Transport and Plant Internal Cycling of N- and S-Compounds

  • Chapter
Progress in Botany 73

Part of the book series: Progress in Botany ((BOTANY,volume 73))

Abstract

A coordinated supply of the whole plant with sulfur (S) and nitrogen (N) requires mechanisms to regulate not only uptake and assimilation but also long-distance transport of both nutrients in the phloem and xylem as well as the plant internal cycling of S and N compounds. In trees, plant internal nutrient cycling which includes bidirectional exchange between phloem and xylem allows to partially uncouple nutrient demand from soil supply and needs to be highly coordinated with seasonal storage and remobilisation of S- and N-compounds. In both annual and perennial plants the pools of N and S compounds cycling within the plant provide an integrated signal to adapt the nutrient supply of the plant to the actual demand.

This review discusses the transport of N and S compounds in phloem and xylem, illustrates the quantitative importance and the physiological relevance of different N and S compounds transported and focuses on the exchange between the transport systems. Thereby we demonstrate similarities and differences between N and S in assimilation, transport, storage and the underlying regulatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiard W, Morvan-Bertrand A, Cliquet JB, Billard JP, Huault C, Sandstrom JP, Prud’homme MP (2004) Carbohydrate and amino acid composition in phloem sap of Lolium perenne L. before and after defoliation. Can J Bot 82:1594–1601

    CAS  Google Scholar 

  • Andrews M (1986) The partitioning of nitrate assimilation between root and shoot of higher plants. Plant Cell Environ 9:511–519

    CAS  Google Scholar 

  • Arlt K, Brandt S, Kehr J (2001) Amino acid analysis in five pooled single plant cell samples using capillary electrophoresis coupled to laser-induced fluorescence detection. J Chromatogr A 926:319–325

    PubMed  CAS  Google Scholar 

  • Atkins CA, Pate JS, McNeil DL (1980) Phloem loading and metabolism of xylem-borne amini compounds in fruiting shoots of a legume. J Exp Bot 31:1509–1520

    CAS  Google Scholar 

  • Azedo-Silva J, Osorio J, Fonseca F, Correia MJ (2004) Effects of soil drying and subsequent re-watering on the activity of nitrate reductase in roots and leaves of Helianthus annuus. Funct Plant Biol 31:611–621

    CAS  Google Scholar 

  • Barrelet T, Ulrich A, Rennenberg H, Krähenbühl U (2006) Seasonal profiles of sulfur, phosphorous, and potassium in Norway spruce wood. Plant Biol 8:462–469

    PubMed  CAS  Google Scholar 

  • Barrelet T, Ulrich A, Rennenberg H, Zwicky CN, Krähenbühl U (2008) Assessing the suitability of Norway spruce wood as an environmental archive for sulfur. Environ Pollut 156:1007–1014

    PubMed  CAS  Google Scholar 

  • Bell CI, Cram WJ, Clarkson DT (1994) Compartmental analysis of 35SO 2-4 exchange kinetics in roots and leaves of a tropical legume Macroptilium atropurpureum cv. Siratro. J Exp Bot 45:879–886

    Google Scholar 

  • Bialczyk J, Lechowski Z, Dziga D (2004) Composition of the xylem sap of tomato seedlings cultivated on media with HCO 3 and nitrogen source as NO 3 or NH +4 . Plant Soil 263:265–272

    CAS  Google Scholar 

  • Blaschke L, Schneider A, Herschbach C, Rennenberg H (1996) Reduced sulfur allocation from three-year-old needles of Norway spruce (Picea abies [Karst] L.). J Exp Bot 47:1025–1032

    CAS  Google Scholar 

  • Bogs J, Bourbouloux A, Cagnac O, Wachter A, Rausch T, Delrot S (2003) Functional characterization and expression analysis of a glutathione transporter, BjGT1, from Brassica juncea: evidences for regulation by heavy metal exposure. Plant Cell Environ 26:1703–1711

    CAS  Google Scholar 

  • Bourgis F, Roje S, Nuccio ML, Fisher DB, Tarczynski MC, Li C, Herschbach C, Rennenberg H, Pimenta MJ, Shen T-L, Gage DA, Hanson AD (1999) S-Methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11:1485–1497

    PubMed  CAS  Google Scholar 

  • Brudenell AJP, Griffiths H, Rossiter JT, Baker DA (1999) The phloem mobility of glucosinolates. J Exp Bot 50:745–756

    CAS  Google Scholar 

  • Brunold C (1990) Reduction of sulfate to sulfide. In: Rennenberg H, Brunold C, De Kok LJ, Stulen I (eds) Sulfur nutrition and sulfur assimilation in higher plants. SPB Academic Publishing, The Hague, pp 13–31

    Google Scholar 

  • Brunold C (1993) Regulatory interactions between sulfate and nitrate assimilation. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur nutrition and assimilation in higher plants. SPB Academic Publishing, The Hague, The Netherlands, pp 61–75

    Google Scholar 

  • Brunold C, Von Ballmoos P, Hesse H, Fell D, Kopriva S (2003) Interactions between sulfur, nitrogen and carbon metabolism. In: Davidian J-C, Grill D, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Rennenberg H (eds) Sulfur transport and assimilation in plants. Backhuys Publishers, Leiden, The Netherlands, pp 45–56

    Google Scholar 

  • Cagnac O, Bourbouloux D, Chakrabarty D, Zhang M-Y, Delrot S (2004) AtOPT6 transportres glutathione derivatives and is induced by primisulfuron. Plant Physiol 135:1378–1387

    PubMed  CAS  Google Scholar 

  • Chen S, Petersen BL, Olsen CE, Schulz A, Halkier BA (2001) Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol 127:194–201

    PubMed  CAS  Google Scholar 

  • Chen A, Komives A, Schroeder JI (2006) An improved grafting technique for mature Arabidopsis plants demonstrates long-distance shoot-to-root transport of phytochelatins in Arabidopsis. Plant Physiol 141:108–120

    PubMed  CAS  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamylcysteine synthetase. Plant J 16:73–78

    PubMed  CAS  Google Scholar 

  • Collier MD, Fotelli MN, Nahm M, Kopriva S, Rennenberg H, Hanke DE, Gessler A (2003) Regulation of nitrogen uptake by Fagus sylvatica on a whole plant level – interactions between cytokinins and soluble N compounds. Plant Cell Environ 26:1549–1560

    CAS  Google Scholar 

  • Dambrine E, Martin F, Carisey N, Granier A, Hallgren JE, Bishop K (1995) Xylem sap composition – a tool for investigating mineral uptake and cycling in adult spruce. Plant Soil 169:233–241

    Google Scholar 

  • Davidian J-C, Kopriva S (2010) Regulation of sulfate uptake and assimilation – the same or not the same? Mol Plant 3:314–325

    PubMed  CAS  Google Scholar 

  • Dickson RE (1989) Carbon and nitrogen allocation in trees. Ann Sci For 46:631s–647s

    Google Scholar 

  • Dickson RE (1991) Assimilate distribution and storage. In: Raghavendra AS (ed) Physiology of trees. Wiley, New York, pp 51–85

    Google Scholar 

  • Dickson RE, Tomlinson PT (1996) Oak growth, development and carbon metabolism in response to water stress. Ann Sci For 53:181–196

    Google Scholar 

  • Dickson RE, Isebrands JG, Tomlinson PT (1990) Distribution and metabolism of current photosynthate by single-flush northern red oak seedlings. Tree Physiol 7:65–77

    PubMed  Google Scholar 

  • Dluzniewska P, Gessler A, Kopriva S, Strnad M, Novak O, Dietrich H, Rennenberg H (2006) Exogenous supply of glutamine and active cytokinin to the roots reduces NO 3 uptake rates in poplar. Plant Cell Environ 29:1284–1297

    PubMed  CAS  Google Scholar 

  • Dürr J, Bücking H, Mult S, Wildhagen H, Palme K, Rennenberg H, Ditengou F, Herschbach C (2010) Seasonal and cell type specific expression of sulfate transporters in the phloem of Populus reveals tree specific characteristics for SO 2−4 storage and mobilization. Plant Mol Biol 72:499–518

    PubMed  Google Scholar 

  • Ericsson A (1978) Seasonal changes in translocation of 14C from different age-classes of needles on 20-year-old Scots pine trees (Pinus silvestris). Physiol Plant 43:351–358

    CAS  Google Scholar 

  • Eschrich W, Fromm J, Essiamah S (1988) Mineral partitioning in the phloem during autumn senescence of beech leaves. Trees 2:73–83

    CAS  Google Scholar 

  • Fiehn O (2003) Metabolic networks of Cucurbita maxima phloem. Phytochemistry 62:875–886

    PubMed  CAS  Google Scholar 

  • Finnemann J, Schjoerring JK (1999) Translocation of NH +4 in oilseed rape plants in relation to glutamine synthetase isogene expression and activity. Physiol Plant 105:469–477

    CAS  Google Scholar 

  • Fitzgerald MA, Ugalde TD, Anderson JW (1999a) S nutrition affects the pools of S available to developing grains of wheat. J Exp Bot 50:1587–1592

    CAS  Google Scholar 

  • Fitzgerald MA, Ugalde TD, Anderson JW (1999b) Sulfur nutrition changes the sources of S in vegetative tissues of wheat during generative growth. J Exp Bot 50:499–508

    CAS  Google Scholar 

  • Forde BG (2002) The role of long-distance signaling in plant responses to nitrate and other nutrients. J Exp Bot 53:39–43

    PubMed  CAS  Google Scholar 

  • Fotelli MN, Nahm M, Heidenfelder A, Papen H, Rennenberg H, Gessler A (2002) Soluble nonprotein nitrogen compounds indicate changes in the nitrogen status of beech seedlings due to climate and thinning. New Phytol 154:85–97

    CAS  Google Scholar 

  • Fotelli MN, Radoglou K, Nahm M, Rennenberg H (2009) Climate effects on the nitrogen balance of beech (Fagus sylvatica) at its south-eastern distribution limit in Europe. Plant Biosystems 143:S34–S45

    Google Scholar 

  • Fracheboud Y, luquez V, Björkén L, Sjödin A, Tuominen H, Jansson S (2009) The control of autumn senescence in European aspen. Plant Physiol 149:1982–1991

    PubMed  CAS  Google Scholar 

  • Franco AC, Duarte HM, Gessler A, de Mattos EA, Nahm M, Rennenberg H, Ribeiro K, Scarano F, Luttge U (2005) In situ measurements of carbon and nitrogen distribution and composition, photochemical efficiency and stable isotope ratios in Araucaria angustifolia. Trees Struct Funct 19:422–430

    CAS  Google Scholar 

  • Gattolin S, Newbury HJ, Bale JS, Tseng HM, Barrett DA, Pritchard J (2008) A diurnal component to the variation in sieve tube amino acid content in wheat. Plant Physiol 147:912–921

    PubMed  CAS  Google Scholar 

  • Gessler A, Schneider S, Weber P, Hanemann U, Rennenberg H (1998a) Soluble N compounds in trees exposed to high loads of N: a comparison between the roots of Norway spruce (Picea abies) and beech (Fagus sylvatica) trees grown under field conditions. New Phytol 138:385–399

    CAS  Google Scholar 

  • Gessler A, Schultze M, Schrempp S, Rennenberg H (1998b) Interaction of phloem-translocated amino compounds with nitrate net uptake by the roots of beech (Fagus sylvatica) seedlings. J Exp Bot 49:1529–1537

    CAS  Google Scholar 

  • Gessler A, Weber P, Schneider S, Rennenberg H (2003) Bidirectional exchange of amino compounds between phloem and xylem during long-distance transport in Norway spruce trees (Picea abies [L.] Karst). J Exp Bot 54:1389–1397

    PubMed  CAS  Google Scholar 

  • Gessler A, Kopriva S, Rennenberg H (2004) Regulation of nitrate uptake of trees at the whole plant level: interaction between nitrogen compounds, cytokinins and carbon metabolism. Tree Physiol 24:1313–1321

    PubMed  CAS  Google Scholar 

  • Gessler A, Duarte HM, Franco AC, Lüttge U, de Mattos EA, Nahm M, Scarano FR, Zaluar HLT, Rennenberg H (2005a) Ecophysiology of selected tree species in different plant communities at the periphery of the Atlantic Forest of SE-Brazil II. Spatial and ontogenetic dynamics in Andira legalis, a deciduous legume tree. Trees Struct Funct 19:510–522

    Google Scholar 

  • Gessler A, Jung K, Gasche R, Papen H, Heidenfelder A, Bîrner E, Metzler B, Augustin S, Hildebrand E, Rennenberg H (2005b) Climate and forest management influence nitrogen balance of European beech forests: Microbial N transformations and inorganic N net uptake capacity of mycorrhizal roots. Eur J Forest Res 124:95–111

    CAS  Google Scholar 

  • Glavac V, Jochheim H (1993) A contribution to understanding the internal nitrogen budget of beech (Fagus sylvatica). Trees Struct Funct 7:237–241

    Google Scholar 

  • Gojon A, Plassard C, Bussi C (1994) Root/shoot distribution of NO 3 assimilation in herbaceous and woody plants. In: Roy J, Garnier E (eds) A whole plant perspective on carbon-N interactions. SPB Academic Publisher, The Hague, pp 131–147

    Google Scholar 

  • Grassi G, Millard P, Gioacchini P, Tagliavini M (2003) Recycling of nitrogen in the xylem of Prunus avium trees starts when spring remobilization of internal reserves declines. Tree Physiol 23:1061–1068

    PubMed  CAS  Google Scholar 

  • Hartmann T, Mult S, Suter M, Rennenberg H, Herschbach C (2000) Leaf age-dependent differences in sulfur assimilation and allocation in poplar (Populus tremula × P. alba) leaves. J Exp Bot 51:1077–1088

    PubMed  CAS  Google Scholar 

  • Hawkesford M, De Kok LJ (2006) Managing sulfur metabolism in plants. Plant Cell Environ 29:382–395

    PubMed  CAS  Google Scholar 

  • Herschbach C (2003a) Sulfur nutrition of deciduous trees at different environmental growth conditions. In: Davidian J-C, Grill D, De Kok LJ, Stulen H, Hawkesford MJ, Schnug E, Rennenberg H (eds) Sulfur transport and assimilation in plants: regulation, interaction, signaling. Backhuys Publishers, Leiden, The Netherlands, pp 111–119

    Google Scholar 

  • Herschbach C (2003b) Whole plant regulation of sulfur nutrition of deciduous trees – influences of the environment. Plant Biol 5:233–244

    CAS  Google Scholar 

  • Herschbach C, Rennenberg H (1994) Influence of glutathione (GSH) on net uptake of sulfate and sulfate transport in tobacco plants. J Exp Bot 45:1069–1076

    CAS  Google Scholar 

  • Herschbach C, Rennenberg H (1995) Long-distance transport of 35S-sulfur in 3-year-old beech trees (Fagus sylvatica). Physiol Plant 95:379–386

    CAS  Google Scholar 

  • Herschbach C, Rennenberg H (1996) Storage and remobilization of sulfur in beech trees (Fagus sylvatica). Physiol Plant 98:125–132

    CAS  Google Scholar 

  • Herschbach C, Rennenberg H (2001a) Significance of phloem-translocated organic sulfur compounds for the regulation of sulfur nutrition. Prog Bot 62:177–193

    CAS  Google Scholar 

  • Herschbach C, Rennenberg H (2001b) Sulfur nutrition of deciduous trees. Naturwissenschaften 88:25–36

    PubMed  CAS  Google Scholar 

  • Herschbach C, De Kok LJ, Rennenberg H (1995a) Net uptake of sulfate and its transport to the shoot in spinach plants fumigated with H2S or SO2: does atmospheric sulfur affect the ‘inter-organ’ regulation of sulfur nutrition. Bot Acta 108:41–46

    CAS  Google Scholar 

  • Herschbach C, De Kok LJ, Rennenberg H (1995b) Net uptake of sulfate and its transport to the shoot in tobacco plants fumigated with H2S or SO2. Plant Soil 175:75–84

    CAS  Google Scholar 

  • Herschbach C, Jouanin L, Rennenberg H (1998) Overexpression of γ-glutamylcysteine synthetase, but not of glutathione synthetase, elevates glutathione allocation in the phloem of transgenic poplar trees. Plant Cell Physiol 39:447–451

    CAS  Google Scholar 

  • Herschbach C, van der Zalm E, Schneider A, Jouanin L, De Kok LJ, Rennenberg H (2000) Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing γ-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S. Plant Physiol 124:461–473

    PubMed  CAS  Google Scholar 

  • Herschbach C, Mult S, Kreuzwieser J, Kopriva S (2005) Influence of anoxia on whole plant sulfur nutrition of flooding-tolerant poplar (Populus tremula × P. alba). Plant Cell Environ 28:167–175

    CAS  Google Scholar 

  • Herschbach C, Rizzini L, Mult S, Hartmann T, Busch F, Peuke AD, Kopriva S, Ensminger I (2010a) Overexpression of bacterial γ-glutamylcysteine synthetase (GSH1) in plastids affects photosynthesis, growth and sulfur metabolism in poplar (Populus tremula × P. alba) dependent on the resulting γ-EC and GSH levels. Plant Cell Environ 33:1138–1151

    PubMed  CAS  Google Scholar 

  • Herschbach C, Scheerer U, Rennenberg H (2010b) Redox states of glutathione and ascorbate in root tips of poplar (Populus tremula x P. alba) depend on phloem transport from the shoot to the roots. J Exp Bot 61:1065–1074

    PubMed  CAS  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatine deficient. Plant Physiol 107:1059–1066

    PubMed  CAS  Google Scholar 

  • Imsande J, Touraine B (1994) N-demand and regulation of nitrate uptake. Plant Physiol 105:3–7

    PubMed  CAS  Google Scholar 

  • Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458

    PubMed  CAS  Google Scholar 

  • Jeschke WD, Hartung W (2000) Root-shoot interactions in mineral nutrition. Plant Soil 226:57–69

    CAS  Google Scholar 

  • Jeschke WD, Pate JS (1991) Modeling of the partitioning, assimilation and storage of nitrate within root and shoot organs of castor bean (Ricinus communis L). J Exp Bot 42:1091–1103

    CAS  Google Scholar 

  • Jocelyn PC (1972) Biochemistry of the SH group – the occurrence, chemical properties, metabolism and biological function of thiols and disulfides. Academic, London, p 404

    Google Scholar 

  • Karley AJ, Douglas AE, Parker WE (2002) Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. J Exp Biol 205:3009–3018

    PubMed  CAS  Google Scholar 

  • Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004) Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol 136:4198–4204

    PubMed  CAS  Google Scholar 

  • Keskitalo J, Bergquist G, Gardeström P, Jansson S (2005) A cellular time table of autumnal senescence. Plant Physiol 139:1635–1648

    PubMed  CAS  Google Scholar 

  • Kopriva S (2006) Regulation of sulfate assimilation in Arabidopsis and beyond. Ann Bot 97:479–495

    PubMed  CAS  Google Scholar 

  • Kopriva S, Rennenberg (2004) Control of sulfate assimilation and glutathione synthesis: interaction with N and C metabolism. J Exp Bot 55:1831–1842

    PubMed  CAS  Google Scholar 

  • Köstner B, Schupp R, Schulze E-D, Rennenberg H (1998) Organic and inorganic sulfur transport in the xylem sap and the sulfur budget of Picea abies trees. Tree Physiol 18:1–9

    PubMed  Google Scholar 

  • Kruse J, Hetzger I, Hansch R, Mendel RR, Walch-Liu P, Engels C, Rennenberg H (2002) Elevated pCO2 favours nitrate reduction in the roots of wild-type tobacco (Nicotiana tabacum cv. Gat.) and significantly alters N-metabolism in transformants lacking functional nitrate reductase in the roots. J Exp Bot 53:2351–2367

    PubMed  CAS  Google Scholar 

  • Kruse J, Hetzger I, Mai C, Polle A, Rennenberg H (2003) Elevated pCO2 affects N-metabolism of young poplar plants (Populus tremula x P. alba) differently at deficient and sufficient N-supply. New Phytol 157:65–81

    CAS  Google Scholar 

  • Kruse J, Kopriva S, Haensch R, Krauss G-J, Mendel R-R, Rennenberg H (2007) Interaction of sulfur and nitrogen nutrition in tobacco (Nicotiana tabacum) plants: significance of nitrogen source and root nitrate reductase. Plant Biol 9:638–646

    PubMed  CAS  Google Scholar 

  • Kuzuhara Y, Isobe A, Awazuhara M, Fujiwara T, Hayashi H (2000) Glutathione levels in phloem sap of rice plants under sulfur deficient conditions. Soil Sci Plant Nutr 46:265–270

    CAS  Google Scholar 

  • Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu Rev Plant Biol 55:341–372

    PubMed  CAS  Google Scholar 

  • Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO 2−4 uptake in intact canola. Plant Physiol 111:147–157

    PubMed  CAS  Google Scholar 

  • Lappartient AG, Touraine B (1997) Glutathione-mediated regulation of ATP sulfurylase activity, SO 2−4 uptake, and oxidative response in intact canola roots. Plant Physiol 114:177–183

    PubMed  CAS  Google Scholar 

  • Lappartient AG, Vidmar JJ, Leustek T, Glass ADM, Touraine B (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18:89–95

    PubMed  CAS  Google Scholar 

  • Larsson G-M, Larsson M, Purves JV, Clarkson DT (1991) Translocation and cycling through roots of recently absorbed nitrogen and sulfur in wheat (Triticum aestivum) during vegetative and generative growth. Physiol Plant 82:345–352

    CAS  Google Scholar 

  • Lee BR, Jin YL, Avice JC, Cliquet JB, Ourry A, Kim TH (2009) Increased proline loading to phloem and its effects on nitrogen uptake and assimilation in water-stressed white clover (Trifolium repens). New Phytol 182:654–663

    PubMed  CAS  Google Scholar 

  • Li Y, Dankher OP, Carreira L, Smith AP, Meagher RB (2006) The shoot-specific expression of γ-glutamylcysteine synthetase directs the long-distance transport of thiol-peptides to roots conferring tolerance to mercury and arsenic. Plant Physiol 141:288–298

    PubMed  CAS  Google Scholar 

  • Lipson D, Nasholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305–316

    Google Scholar 

  • Lohaus G, Moellers C (2000) Phloem transport of amino acids in two Brassica napus L. genotypes and one B-carinata genotype in relation to their seed protein content. Planta 211:833–840

    PubMed  CAS  Google Scholar 

  • Macduff JH, Bakken AK (2003) Diurnal variation in uptake and xylem contents of inorganic and assimilated N under continuous and interrupted N supply to Phleum pratense and Festuca pratensis. J Exp Bot 54:431–444

    PubMed  CAS  Google Scholar 

  • Malaguti D, Millard P, Wendler R, Hepburn A, Tagliavini M (2001) Translocation of amino acids in the xylem of apple (Malus domestica Borkh.) trees in spring as a consequence of both N remobilization and root uptake. J Exp Bot 52:1665–1671

    PubMed  CAS  Google Scholar 

  • Martin F, Amraoui MB (1989) Partitioning of assimilated nitrogen in beech (Fagus sylvatica). Ann Sci For 46:S660–S662

    Google Scholar 

  • Mattsson M, Schjoerring JK (1996) Ammonia emission from young barley plants: influence of N source, light/dark cycles and inhibition of glutamine synthetase. J Exp Bot 47:477–484

    CAS  Google Scholar 

  • Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cdmium on iron translocation. Plant J 54:249–259

    PubMed  Google Scholar 

  • Merchant A, Peuke AD, Keitel C, Macfarlane C, Warren CR, Adams MA (2010) Phloem sap and leaf delta C-13, carbohydrates, and amino acid concentrations in Eucalyptus globulus change systematically according to flooding and water deficit treatment. J Exp Bot 61:1785–1793

    PubMed  CAS  Google Scholar 

  • Millard P, Grelet G-A (2010) Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol 30:1083–1095

    PubMed  CAS  Google Scholar 

  • Miller AJ, Cramer MD (2005) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36

    CAS  Google Scholar 

  • Münch E (1930) Die Stoffbewegungen der Pflanze. Gustav Fischer, Jena, Germany

    Google Scholar 

  • Nahm M, Holst T, Matzarakis A, Mayer H, Rennenberg H, Gessler A (2006) Soluble N compound profiles and concentrations in European beech (Fagus sylvatica L.) are influenced by local climate and thinning. Eur J Forest Res 125:1–14

    CAS  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Google Scholar 

  • Näsholm T, Kielland K, Ganetec U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    PubMed  Google Scholar 

  • Ohshima T, Hayashi H, Chino M (1990) Collection and chemical composition of pure phloem sap from Zea mays L. Plant Cell Physiol 31:735–737

    CAS  Google Scholar 

  • Osawa H, Stacey G, Gassmann W (2006) ScOPT1 and AtOPT4 function as proton-coupled oligopeptide transporters with broad but distinct substrate specificities. Biochem J 393:267–275

    PubMed  CAS  Google Scholar 

  • Palfi G, Koves E, Bito M, Sebestyen R (1974) Role of amino acids during water stress in species accumulating proline. Phyton Int J Exp Bot 32:121–127

    CAS  Google Scholar 

  • Peuke AD (2010) Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modeling experiments in Ricinus communis. J Exp Bot 61:635–655

    PubMed  CAS  Google Scholar 

  • Peuke AD, Rokitta M, Zimmermann U, Schreiber L, Haase A (2001) Simultaneous measurement of water flow velocity and solute transport in xylem and phloem of adult plants of Ricinus communis over a daily time course by nuclear magnetic resonance spectrometry. Plant Cell Environ 24:491–503

    CAS  Google Scholar 

  • Peuke AD, Jeschke WD, Hartung W (2002a) Flows of elements, ions and abscisic acid in Ricinus communis and site of nitrate reduction under potassium limitation. J Exp Bot 53:241–250

    PubMed  CAS  Google Scholar 

  • Peuke AD, Schraml C, Hartung W, Rennenberg H (2002b) Identification of drought stress sensitive beech ecotypes by physiological parameters. New Phytol 154:373–387

    CAS  Google Scholar 

  • Pfautsch S, Gessler A, Adams MA, Rennenberg H (2009) Using amino-nitrogen pools and fluxes to identify contributions of understory Acacia spp. to overstory Eucalyptus regnans and stand nitrogen uptake in temperate Australia. New Phytol 183:1097–1113

    PubMed  CAS  Google Scholar 

  • Pike S, Patel A, Stacey G, Gassmann W (2009) Arabidopsis OPT6 is an oligopeptide transporter with exceptionally broad substrate specificity. Plant Cell Physiol 50:1923–1932

    PubMed  CAS  Google Scholar 

  • Plain C, Gerant D, Maillard P, Dannoura M, Dong YW, Zeller B, Priault P, Parent F, Epron D (2009) Tracing of recently assimilated carbon in respiration at high temporal resolution in the field with a tunable diode laser absorption spectrometer after in situ (CO2)-C13 pulse labeling of 20-year-old beech trees. Tree Physiol 29:1433–1445

    PubMed  CAS  Google Scholar 

  • Rausch T, Gromes R, Liedschulte V, Müller I, Bogs J, Galocic V, Wachter A (2007) Novel insight into regulation of GSH biosynthesis in higher plants. Plant Biol 9:565–572

    PubMed  CAS  Google Scholar 

  • Raven JA, Andrews M (2010) Evolution of tree nutrition. Tree Physiol 30:1050–1071

    PubMed  Google Scholar 

  • Rennenberg H (1984) The fate of excess sulfur in higher plants. Ann Rev Plant Physiol 35:121–153

    CAS  Google Scholar 

  • Rennenberg H, Gessler A (1999) Consequences of N deposition to forest ecosystems – recent results and future research needs. Water Air Soil Pollut 116:47–64

    CAS  Google Scholar 

  • Rennenberg S, Schmidt S (2010) Perennial lifestyle – an adaptation to nutrient limitation? Tree Physiol 30:1047–1049

    PubMed  Google Scholar 

  • Rennenberg H, Polle A, Martini N, Thoene B (1988) Interaction of sulfate and glutathione transport in cultured tobacco cells. Planta 176:68–74

    CAS  Google Scholar 

  • Rennenberg H, Schupp R, Glavac V, Jochheim H (1994a) Xylem sap composition of beech (Fagus sylvatica L.) trees: seasonal changes in the axial distribution of sulfur compounds. Tree Physiol 14:541–548

    PubMed  CAS  Google Scholar 

  • Rennenberg H, Schupp R, Schneider A (1994b) Thiol composition of a xylem-tapping mistletoe and the xylem sap of its hosts. Phytochemistry 37:975–977

    CAS  Google Scholar 

  • Rennenberg H, Kreuzer K, Papen H, Weber P (1998) Consequences of high loads of nitrogen for spruce (Picea abies) and beech (Fagus sylvatica) forests. New Phytol 139:71–86

    CAS  Google Scholar 

  • Rennenberg H, Herschbach C, Harberer K, Kopriva S (2007) Sulfur metabolism in plants: are trees different? Plant Biol 9:620–637

    PubMed  CAS  Google Scholar 

  • Rennenberg H, Wildhagen H, Ehlting B (2010) Nitrogen nutrition of poplar trees. Plant Biol 12:275–291

    PubMed  CAS  Google Scholar 

  • Scarano F, Duarte H, Franco A, Gessler A, de Mattos EA, Nahm M, Rennenberg H, Zaluar HLT, Lüttge U (2005) Ecophysiology of selected tree species in different plant communities at the periphery of the Atlantic Forest of SE Brazil I. Performance of three different species of Clusia in an array of plant communities. Trees Struct Funct 19:497–509

    CAS  Google Scholar 

  • Scheerer U, Haensch R, Mendel RR, Kopriva S, Rennenberg H, Herschbach C (2010) Sulfur flux through the sulfate assimilation pathway is differently controlled by adenosine 5′-phosphosulfate reductase under stress and in transgenic poplar plants overexpressing γ-ECS, SO, or APR. J Exp Bot 61:609–622

    PubMed  CAS  Google Scholar 

  • Scherer HW (2001) Sulfur in crop production. Eur J Agron 14:81–111

    CAS  Google Scholar 

  • Scheurwater I, Koren M, Lambers H, Atkin OK (2002) The contribution of roots and shoots to whole plant nitrate reduction in fast- and slow-growing grass species. J Exp Bot 53:1635–1642

    PubMed  CAS  Google Scholar 

  • Schjoerring JK, Husted S, Mack G, Mattsson M (2002) The regulation of ammonium translocation in plants. J Exp Bot 53:883–890

    PubMed  CAS  Google Scholar 

  • Schmidt S, Stewart GR (1998) Transport, storage and mobilization of nitrogen by trees and shrubs in the wet/dry tropics of northern Australia. Tree Physiol 18:403–410

    PubMed  CAS  Google Scholar 

  • Schneider A, Martini N, Rennenberg H (1992) Reduced glutathione (GSH) transport into cultured tobacco cells. Plant Physiol Biochem 30:29–38

    CAS  Google Scholar 

  • Schneider A, Schupp R, Sauter J, Rennenberg H (1994a) Thiol and amino acid composition of the xylem sap of poplar trees (Populus × canadensis ‘robusta’). Can J Bot 72:347–351

    CAS  Google Scholar 

  • Schneider A, Schatten T, Rennenberg H (1994b) Exchange between phloem and xylem during long distance transport of glutathione in spruce trees (Picea abies [Karst.] L.). J Exp Bot 45:457–462

    CAS  Google Scholar 

  • Schneider S, Gessler A, Weber P, von Sengbusch D, Hanemann U, Rennenberg H (1996) Soluble N compounds in trees exposed to high loads of N: a comparison of spruce (Picea abies) and beech (Fagus sylvatica) grown under field conditions. New Phytol 134:103–114

    CAS  Google Scholar 

  • Schulte M, Herschbach C, Rennenberg H (1998) Interactive effects of elevated atmospheric CO2, mycorrhization and drought on long-distance transport of reduced-sulfur in young pedunculate oak trees (Quercus robur L.). Plant Cell Environ 21:917–926

    CAS  Google Scholar 

  • Schulte M, von Ballmoos P, Rennenberg H, Herschbach C (2002) Life-long growth of Quercus ilex L. at natural CO2 springs acclimates sulfur, nitrogen and carbohydrate metabolism of the progeny to elevated pCO2. Plant Cell Environ 25:1715–1727

    CAS  Google Scholar 

  • Schupp R, Rennenberg H (1992) Changes in sulfur metabolism during needle development of Norway spruce. Bot Acta 105:180–189

    CAS  Google Scholar 

  • Schupp R, Glavac V, Rennenberg H (1991) Thiol composition of xylem sap of beech trees. Phytochemistry 30:1415–1418

    CAS  Google Scholar 

  • Schupp R, Schatten T, Willenbrink J, Rennenberg H (1992) Long-distance transport of reduced-sulfur in spruce (Picea abies L.). J Exp Bot 43:1243–1250

    CAS  Google Scholar 

  • Seegmüller S, Rennenberg H (2002) Transport of organic sulfur and nitrogen in the roots of young mycorrizedal pedunculate oak trees (Quercus robur L.). Plant Soil 242:291–297

    Google Scholar 

  • Stacey MG, Osawa H, Patel A, Gassmann W, Stacy G (2006) Expression analyses of Arabidopsis oligopeptide transporters during seed germination, vegetative growth and reproduction. Planta 223:291–305

    PubMed  CAS  Google Scholar 

  • Stoelken G, Simon J, Ehlting B, Rennenberg H (2010) The presence of amino acids affects inorganic N uptake in non-mycrorrhizal seedlings of European beech (Fagus sylvatica). Tree Physiol 30:1118–1128

    PubMed  CAS  Google Scholar 

  • Stoermer H, Seith B, Hanemann U, George E, Rennenberg H (1997) Nitrogen distribution in young Norway spruce (Picea abies) trees as affected by pedospheric nitrogen supply. Physiol Plant 101:764–769

    CAS  Google Scholar 

  • Struis RPWJ, Ludwig C, Barrelet T, Krähenbühl U, Rennenberg H (2008) Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy. Sci Total Environ 403:196–206

    PubMed  CAS  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulfate transporters involved in uptake and translocation of sulfate in Arabidopsis thaliana. Plant J 23:171–182

    PubMed  CAS  Google Scholar 

  • Takei K, Takahashi T, Sugiyama T, Yamaya T, Sakakibara H (2002) Multiple routes communicating nitrogen availability from roots to shoots: a signal transduction pathway mediated by cytokinin. J Exp Bot 53:971–977

    PubMed  CAS  Google Scholar 

  • Tausz M, Weidner W, Wonisch A, De Kok LJ, Grill D (2003) Uptake and distribution of S-35-sulfate in needles and roots of spruce seedlings as affected by exposure to SO2 and H2S. Environ Exp Bot 50:211–220

    CAS  Google Scholar 

  • Thavarajah D, Ball RA, Schoenau JJ (2005) Nitrogen fixation, amino acid, and ureide associations in chickpea. Crop Sci 45:2497–2502

    CAS  Google Scholar 

  • Thomas SG, Bilsborrow PE, Hocking TJ, Bennett J (2000) Effect of sulfur deficiency on the growth and metabolism of sugar beet (Beta vulgaris cv Druid). J Sci Food Agric 80:2057–2062

    CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    PubMed  CAS  Google Scholar 

  • Tischner R (2000) Nitrate uptake and reduction in higher and lower plants. Plant Cell Environ 23:1005–1024

    CAS  Google Scholar 

  • Tsay Y-F, Chiu C-C, Tsai C-B, Ho C-H, Hsu P-K (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300

    PubMed  CAS  Google Scholar 

  • Ulrich A, Barrelet T, Figi R, Rennenberg H, Krähenbühl U (2009) Time resolved sulfur and nutrient distribution in Norway spruce drill cores using ICP-OES. Microchim Acta 165:79–89

    CAS  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krähenbühl U, Op den Camp R, Brunold C (2002) Flux control of sulfate assimilation in Arabidopsis thaliana: adenosine 5′-phosphosulfate reductase is more susceptible than ATP sulfurylase to negative control by thiols. Plant J 31:729–740

    PubMed  CAS  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman GD (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750

    Google Scholar 

  • Weber P, Stoermer H, Gessler A, Schneider S, Von Sengbusch D, Hanemann U, Rennenberg H (1998) Metabolic responses of Norway spruce (Picea abies) trees to long-term forest management practices and acute (NH4)(2)SO4 fertilization: transport of soluble non-protein nitrogen compounds in xylem and phloem. New Phytol 140:461–475

    CAS  Google Scholar 

  • Wetzel S, Demmers C, Greenwood JS (1989) Seasonally fluctuating bark proteins are a potential form of nitrogen storage in three temperate hardwoods. Planta 178:275–281

    CAS  Google Scholar 

  • Youssefi F, Weinbaum SA, Brown PH (2000) Regulation of nitrogen partitioning in field-grown almond trees: effects of fruit load and foliar nitrogen applications. Plant Soil 227:273–281

    CAS  Google Scholar 

  • Zhang M-Y, Bourbouloux A, Cagnac O, Srikanth CV, Rentsch D, Bachhawat AK, Delrot S (2004) A novel family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiol 134:482–491

    PubMed  CAS  Google Scholar 

  • Zhao F-J, McGrath SP, Crosland AR (1995) Changes in the sulfur status of British wheat grain in the last decade, and its geographical distribution. J Sci Food Agric 68:507–514

    CAS  Google Scholar 

  • Zhao FJ, Hawkesford MJ, Warrilow AGS, McGrath SP, Clarkson DT (1996) Responses of two wheat varieties to sulfur addition and diagnosis of sulfur deficiency. Plant Soil 181:317–327

    CAS  Google Scholar 

  • Zhao F-J, Salmon SE, Withers PJA, Evans EJ, Monaghan JM, Shewry PR, McGrath SP (1999a) Responses of breadmaking quality to sulfur in three wheat varieties. J Sci Food Agric 79:1865–1874

    CAS  Google Scholar 

  • Zhao F-J, Salmon SE, Withers PJA, Monaghan JM, Evans EJ, Shewry PR, McGrath SP (1999b) Variation in the breadmaking quality and rheological properties of what in relation to sulfur nutrition under field conditions. J Cereal Sci 30:19–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Herschbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herschbach, C., Gessler, A., Rennenberg, H. (2012). Long-Distance Transport and Plant Internal Cycling of N- and S-Compounds. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany 73. Progress in Botany, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22746-2_6

Download citation

Publish with us

Policies and ethics