Advertisement

Mechanisms of Cd Hyperaccumulation and Detoxification in Heavy Metal Hyperaccumulators: How Plants Cope with Cd

  • Rong-Liang QiuEmail author
  • Ye-Tao Tang
  • Xiao-Wen Zeng
  • Palaniswamy Thangavel
  • Lu Tang
  • Yuan-Yuan Gan
  • Rong-Rong Ying
  • Shi-Zhong Wang
Part of the Progress in Botany book series (BOTANY, volume 73)

Abstract

Cadmium (Cd) is classified as a toxic heavy metal and is of major concern in environmental heavy metals contamination. Some special plants, referring to Cd hyperaccumulators, could accumulate ≥100 mg kg−1 Cd in their shoots without showing phytotoxicity. The mechanisms of Cd accumulation and tolerance in Cd hyperaccumulators have provoked the interest of scientists. In the latest decade, many efforts have been put in investigating the biomolecular basis of Cd hyperaccumulation and associated Cd hypertolerance, including some important heavy metal transporters correlated to Cd accumulation and ion homeostasis in plants. This review provides an overview of the main aspects involving Cd uptake, translocation, distribution in hyperaccumulators, and the evolution of Cd hyperaccumulation. Besides, the hypothesis about the physiological role of Cd may play in hyperaccumulators is also highlighted.

Keywords

Hyperaccumulator Plant Metal Hyperaccumulation Cation Diffusion Facilitator Hyperaccumulating Ecotype Defense Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ADP

Adenosine diphosphate

ATP

Adenosine-5′-triphosphate

ATPase

Adenosine triphosphatase

ASA

Ascorbate

APX

Ascorbate peroxidase

ABC

ATP-binding cassette

BSO

Buthionine sulfoximine

Cd

Cadmium

CAT

Catalase

CA

Carbonic anhydrase

CDF

Cation diffusion facilitator

CAXs

Cation/H+ exchangers

DW

Dry weight

EDX

Energy-dispersive X-ray spectrometer

FW

Fresh weight

FBPase

Fructose 1,6-bisphosphatase

GAPDH

Glyceraldehyde 3-phosphate dehydrogenase

GPX

Guaiacol peroxidase

GSH

Glutathione

GR

Glutathione reductase

HMA4

Heavy metal-transporting ATPase4

HMW

High molecular weight

HE

Hyperaccumulating ecotype

Pb

Lead

LFDI

Leaf feeding damage index

LMW

Low molecular weight

MDA

Malondialdehyde

MTP

Microsomal triglyceride transfer protein

NRAMP

Natural resistance-associated macrophage protein

NADH

Nicotinamide adenine dinucleotide

NADPH

Nicotinamide adenine dinucleotide phosphate

Ni

Nickel

NHE

Non-hyperaccumulating ecotype

POD

Peroxidase

PCs

Phytochelatins

Put

Putrescine

QTL

Quantitative trait locus

ROS

Reactive oxygen species

RuBP

Ribulose-1,5-bisphosphate

Rubisco

Ribulose-1,5-bisphosphate carboxylase-oxygenase

Se

Selenium

Spd

Spermidine

Spm

Spermine

SOD

Superoxide dismutase

ZIP

ZRT1/IRT1-like protein

Zn

Zinc

Notes

Acknowledgments

The present research is financially supported by NSFC-Guangdong Joint Foundation of China (No. U0833004), Natural Science Foundation of China (No. 40901151, 31000248), and National High Technology Research and Development Program of China (863 Program) (No. 2007AA06Z305).

References

  1. Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224CrossRefGoogle Scholar
  2. Assunção AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360CrossRefGoogle Scholar
  3. Baker AJM (1987) Metal tolerance. New Phytol 106:93–111CrossRefGoogle Scholar
  4. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  5. Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68CrossRefGoogle Scholar
  6. Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268PubMedCrossRefGoogle Scholar
  7. Behmer ST, Lloyd CM, Raubenheimer D, Stewart-Clark J, Knight J, Leighton RS, Harper F, Smith JAC (2005) Metal hyperaccumulation in plants: mechanisms of defence against insect herbivores. Funct Ecol 19:55–66CrossRefGoogle Scholar
  8. Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34CrossRefGoogle Scholar
  9. Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158–167PubMedCrossRefGoogle Scholar
  10. Bovet L, Eggmann T, Meylan-Bettex M, Polier J, Kammer P, Marin E, Feller U, Martinoia E (2003) Transcript levels of AtMRPs after cadmium treatment: induction of AtMRP3. Plant Cell Environ 26:371–381CrossRefGoogle Scholar
  11. Bovet L, Feller U, Martinoia E (2005) Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach. Environ Int 31:263–267PubMedCrossRefGoogle Scholar
  12. Boyd RS (2004) Ecology of hyperaccumulation. New Phytol 162:563–567CrossRefGoogle Scholar
  13. Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153–176CrossRefGoogle Scholar
  14. Boyd RS, Martens SN (1998) The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8:1–7CrossRefGoogle Scholar
  15. Boyd RS, Moar WJ (1999) The defensive function of Ni in plants: response of the polyphagous herbivore Spodoptera exigua (Lepidoptera: Noctuidae) to hyperaccumulator and accumulator species of Streptanthus (Brassicaceae). Oecologia 118:218–224CrossRefGoogle Scholar
  16. Boyd RS, Shaw JJ, Martens SN (1994) Nickel hyperaccumulation defends Streptanthus polygaloides (Brassicaceae) against pathogens. Am J Bot 81:294–300CrossRefGoogle Scholar
  17. Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57CrossRefGoogle Scholar
  18. Cailliatte R, Lapeyre B, Briat JF, Mari S, Curie C (2009) The NRAMP6 metal transporter contributes to cadmium toxicity. Biochem J 422:217–228PubMedCrossRefGoogle Scholar
  19. Calabrese EJ, Baldwin LA (1998) Hormesis as a biological hypothesis. Environ Health Perspect 106(Suppl 1):357–362PubMedCrossRefGoogle Scholar
  20. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284PubMedCrossRefGoogle Scholar
  21. Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40:6792–6798PubMedCrossRefGoogle Scholar
  22. Clemens S (2000) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486CrossRefGoogle Scholar
  23. Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315PubMedCrossRefGoogle Scholar
  24. Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330PubMedCrossRefGoogle Scholar
  25. Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357PubMedCrossRefGoogle Scholar
  26. Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716–725PubMedCrossRefGoogle Scholar
  27. Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775PubMedCrossRefGoogle Scholar
  28. Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major qantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065PubMedCrossRefGoogle Scholar
  29. Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755PubMedCrossRefGoogle Scholar
  30. Dahmani-Muller H, van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238PubMedCrossRefGoogle Scholar
  31. Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36PubMedCrossRefGoogle Scholar
  32. Dräger DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer AJ, Saumitou-Laprade P, Krämer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39:425–439PubMedCrossRefGoogle Scholar
  33. Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J & C Presl). Planta 214:635–640PubMedCrossRefGoogle Scholar
  34. Freeman JL, Salt DE (2007) The metal tolerance profile of Thlaspi goesingense is mimicked in Arabidopsis thaliana heterologously expressing serine acetyl-transferase. BMC Plant Biol 7:63PubMedCrossRefGoogle Scholar
  35. Freeman JL, Lindblom SD, Quinn CF, Fakra S, Marcus MA, Pilon-Smits EAH (2007) Selenium accumulation protects plants from herbivory by Orthoptera due to toxicity and deterrence. New Phytol 175:490–500PubMedCrossRefGoogle Scholar
  36. Ghaderian YSM, Lyon AJE, Baker AJM (2000) Seedling mortality of metal hyperaccumulator plants resulting from damping off by Pythium spp. New Phytol 146:219–224CrossRefGoogle Scholar
  37. Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488CrossRefGoogle Scholar
  38. Haines BJ (2002) Zincophilic root foraging in Thlaspi caerulescens. New Phytol 155:363–372CrossRefGoogle Scholar
  39. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11PubMedCrossRefGoogle Scholar
  40. Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613PubMedCrossRefGoogle Scholar
  41. Han YL, Yuan HY, Huang SZ, Guo Z, Xia B, Gu JG (2007) Cadmium tolerance and accumulation by two species of Iris. Ecotoxicology 16:557–563PubMedCrossRefGoogle Scholar
  42. Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395PubMedCrossRefGoogle Scholar
  43. Hanson B, Garifullina GF, Lindblom SD, Wangeline A, Ackley A, Kramer K, Norton AP, Lawrence CB, Pilon-Smits EAH (2003) Selenium accumulation protects Brassica juncea from invertebrate herbivory and fungal infection. New Phytol 159:461–469CrossRefGoogle Scholar
  44. Hanson B, Lindblom SD, Loeffler ML, Pilon-Smits EAH (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162:655–662CrossRefGoogle Scholar
  45. Hardiman RT, Jacoby B, Banin A (1984) Factors affecting the distribution of cadmium, copper and lead and their effects upon yield and zinc content in bush bean (Phaseolus vulgaris L.). Plant Soil 81:17–27CrossRefGoogle Scholar
  46. Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV (1998) Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol 116:1413–1420PubMedCrossRefGoogle Scholar
  47. Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113PubMedCrossRefGoogle Scholar
  48. Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–134PubMedCrossRefGoogle Scholar
  49. Hu PJ, Qiu RL, Senthilkumar P, Jiang D, Chen ZW, Tang YT, Liu FJ (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot 66:317–325CrossRefGoogle Scholar
  50. Huitson SB, Macnair MR (2003) Does zinc protect the zinc hyperaccumulator Arabidopsis halleri from herbivory by snails? New Phytol 159:453–459CrossRefGoogle Scholar
  51. Jhee EM, Dandridge KL, Christy AMJr, Pollard AJ (1999) Selective herbivory on low-zinc phenotypes on the hyperaccumulator Thlaspi caerulescens (Brassicaceae). Chemoecology 9:93–95CrossRefGoogle Scholar
  52. Jhee EM, Boyd RS, Eubanks MD (2005) Nick hyperaccumulation as an elemental defence of Streptanthus polygaloides (Brassicaceae): influence of herbivore feeding mode. New Phytol 168:331–344PubMedCrossRefGoogle Scholar
  53. Jhee EM, Bod RS, Eubanks MD, Davis MA (2006) Nickel hyperaccumulation by Streptanthus polygaloides protects against the folivore Plutella xylostella (Lepidoptera: Plutellidae). Plant Ecol 183:91–104CrossRefGoogle Scholar
  54. Jiang RF, Ma DY, Zhao FJ, McGrath SP (2005) Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol 167:805–814PubMedCrossRefGoogle Scholar
  55. Jin XF, Yang XE, Islam E, Liu D, Mahmood Q (2008a) Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J Hazard Mater 156:387–397PubMedCrossRefGoogle Scholar
  56. Jin XF, Yang XE, Islam E, Liu D, Mahmood Q, Li H, Li J (2008b) Ultrastructural changes, zinc hyperaccumulation and its relation with antioxidants in two ecotypes of Sedum alfredii Hance. Plant Physiol Biochem 46:997–1006PubMedCrossRefGoogle Scholar
  57. Kamachi H, Komori I, Tamura H, Sawa Y, Karahara I, Honma Y, Wada N, Kawabata T, Matsuda K, Ikeno S, Noguchi M, Inoue H (2005) Lead tolerance and accumulation in the gametophytes of the fern Athyrium yokoscense. J Plant Res 118:137–145PubMedCrossRefGoogle Scholar
  58. Karley AJ, Leigh RA, Sanders D (2000) Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends Plant Sci 5:465–470PubMedCrossRefGoogle Scholar
  59. Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140:922–932PubMedCrossRefGoogle Scholar
  60. Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218PubMedCrossRefGoogle Scholar
  61. Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E, Maeshima M (2006) Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47:309–318PubMedCrossRefGoogle Scholar
  62. Korenkov V, Hirschi K, Crutchfield J, Wagner G (2007a) Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum. Planta 226:1379–1387PubMedCrossRefGoogle Scholar
  63. Korenkov V, Park S, Cheng NH, Sreevidya C, Lachmansingh J, Morris J, Hirschi K, Wagner G (2007b) Enhanced Cd2+/H+-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta 225:403–411CrossRefGoogle Scholar
  64. Korshunova YO, Eide D, Gregg Clark W, Lou Guerinot M, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44PubMedCrossRefGoogle Scholar
  65. Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810PubMedCrossRefGoogle Scholar
  66. Krämer U (2005) MTP1 mops up excess zinc in Arabidopsis cells. Trends Plant Sci 10:313–315PubMedCrossRefGoogle Scholar
  67. Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534PubMedCrossRefGoogle Scholar
  68. Krämer U, Cotter-Howels JD, Charnock JM, Baker AJM, Smith AC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638CrossRefGoogle Scholar
  69. Kubota H, Takenaka C (2003) Arabis gemmifera is a hyperaccumulator of Cd and Zn. Int J Phytoremediation 5:197–201PubMedCrossRefGoogle Scholar
  70. Küpper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311CrossRefGoogle Scholar
  71. Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84PubMedCrossRefGoogle Scholar
  72. Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757PubMedCrossRefGoogle Scholar
  73. Lane TW, Morel FMM (2000) Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant Physiol 123:345–352PubMedCrossRefGoogle Scholar
  74. Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FMM (2005) A cadmium enzyme from a marine diatom. Nature 435:42PubMedCrossRefGoogle Scholar
  75. Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer and others U (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051PubMedCrossRefGoogle Scholar
  76. Li YS, Sun LN, Sun TH, Wang H (2007) Cadmium hyperaccumulator Beta vulgaris var. cicla L. and its accumulating characteristics. J Agro Environ Sci 26:1386–1389 (In Chinese)Google Scholar
  77. Liao M, Xie XM (2004) Cadmium release in contaminated soils due to organic acids. Pedosphere 14:223–228Google Scholar
  78. Liu W, Shu WS, Lan CY (2004) Viola baoshanensis, a plant that hyperaccumulates cadmium. Chin Sci Bull 49:29–32Google Scholar
  79. Liu MQ, Yanai J, Jiang RF, Zhang FS, McGrath SP, Zhao FJ (2008) Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens? Chemosphere 71:1276–1283PubMedCrossRefGoogle Scholar
  80. Liu ZL, He XY, Chen W, Yuan FH, Yan K, Tao DL (2009) Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator – Lonicera japonica Thunb. J Hazard Mater 169:170–175PubMedCrossRefGoogle Scholar
  81. Liu FJ, Tang YT, Du RJ, Yang HY, Wu QT, Qiu RL (2010a) Root foraging for zinc and cadmium requirement in the Zn/Cd hyperaccumulator plant Sedum alfredii. Plant Soil 327:365–375CrossRefGoogle Scholar
  82. Liu XQ, Peng KJ, Wang AG, Lian CL, Shen ZG (2010b) Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere 78:1136–1141PubMedCrossRefGoogle Scholar
  83. Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20CrossRefGoogle Scholar
  84. Lombi E, Zhao FJ, McGrath SP, Young SD, Sacchi GA (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60CrossRefGoogle Scholar
  85. Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ, McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 128:1359–1367PubMedCrossRefGoogle Scholar
  86. Lu LL, Tian SK, Yang XE, Wang XC, Brown P, Li TQ, He ZL (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213PubMedCrossRefGoogle Scholar
  87. Lu LL, Tian SK, Yang XE, Li TQ, He ZL (2009) Cadmium uptake and xylem loading are active processes in the hyperaccumulator Sedum alfredii. J Plant Physiol 166:579–587PubMedCrossRefGoogle Scholar
  88. Ma JF, Ueno D, Zhao FJ, McGrath SP (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736PubMedCrossRefGoogle Scholar
  89. Malec P, Maleva MG, Prasad MNV, Strzałka K (2009) Identification and characterization of Cd-induced peptides in Egeria densa (water weed): putative role in Cd detoxification. Aquat Toxicol 95:213–221PubMedCrossRefGoogle Scholar
  90. Martens SN, Boyd RS (1994) The ecological significance of nickel hyperaccumulation: a plant chemical defense. Oecologia 98:379–384CrossRefGoogle Scholar
  91. Mcnair MR (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105CrossRefGoogle Scholar
  92. Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259PubMedCrossRefGoogle Scholar
  93. Mills RF, Krijger GC, Baccarini PJ, Hall J, Williams LE (2003) Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35:164–176PubMedCrossRefGoogle Scholar
  94. Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13PubMedCrossRefGoogle Scholar
  95. Mishra S, Tripathi RD, Srivastava S, Dwivedi S, Trivedi PK, Dhankher OP, Khare A (2009) Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L. Bioresour Technol 100:2155–2161PubMedCrossRefGoogle Scholar
  96. Nedelkoska TV, Doran PM (2000) Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol Bioeng 67:607–615PubMedCrossRefGoogle Scholar
  97. Nishizono H, Suzuki S, Ishii F (1987) Accumulation of heavy metals in the metal-tolerant fern, Athyrium yokoscense, growing on various environments. Plant Soil 102:65–70CrossRefGoogle Scholar
  98. Noret N, Meerts P, TolràR PC, Barceló J, Escarré J (2005) Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytol 165:763–772PubMedCrossRefGoogle Scholar
  99. Ogawa K (2005) Glutathione-associated regulation of plant growth and stress responses. Antioxid Redox Signal 7:973–981PubMedCrossRefGoogle Scholar
  100. Oomen RJFJ, Wu J, Lelièvre F, Blanchet S, Richaud P, Barbier-Brygoo H, Aarts MGM, Thomine S (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181:637–650PubMedCrossRefGoogle Scholar
  101. Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 27:4721–4728Google Scholar
  102. Papadakis AK, Roubelakis-Angelakis KA (2005) Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide. Planta 220:826–837PubMedCrossRefGoogle Scholar
  103. Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823PubMedCrossRefGoogle Scholar
  104. Paulsen IT, Saier JMH (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103PubMedCrossRefGoogle Scholar
  105. Pence NS, Larsen PB, Ebbs SD, Ebbs L, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960PubMedCrossRefGoogle Scholar
  106. Pielichowska M, Wierzbicka M (2004) Uptake and localization of cadmium by Biscutella laevigata, a cadmium hyperaccumulator. Acta Biol Cracov Bot 46:57–63Google Scholar
  107. Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274PubMedCrossRefGoogle Scholar
  108. Pittman JK, Sreevidya CS, Shigaki T, Ueoka-Nakanishi H, Hirschi KD (2002) Distinct N-terminal regulatory domains of Ca2+/H+ antiporters. Plant Physiol 130:1054–1062PubMedCrossRefGoogle Scholar
  109. Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58:1717–1728PubMedCrossRefGoogle Scholar
  110. Pollard AJ, Baker AJM (1997) Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytol 135:655–658CrossRefGoogle Scholar
  111. Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545CrossRefGoogle Scholar
  112. Prezemeck E, Haase NU (1991) The binding of manganese, copper and cadmium to peptides of the xylem sap of plant roots. Water Air Soil Pollut 57–58:569–577CrossRefGoogle Scholar
  113. Qiu RL, Fang XH, Tang YT, Du SJ, Zeng XW (2006) Zinc hyperaccumulation and uptake by Potentilla griffithii Hook. Int J Phytoremediation 8:299–310PubMedCrossRefGoogle Scholar
  114. Qiu RL, Thangavel P, Hu PJ, Senthilkumar P, Ying RR, Tang YT (2011) Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii. J Hazard Mater 186:1425–1430Google Scholar
  115. Qiu RL, Zhao X, Tang YT, Yu FM, Hu PJ (2008) Antioxidative response to Cd in a newly discovered cadmium hyperaccumulator, Arabis paniculata F. Chemosphere 74:6–12PubMedCrossRefGoogle Scholar
  116. Roosens N, Verbruggen N, Meerts P, Ximenez-Embun P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from Western Europe. Plant Cell Environ 26:1657–1672CrossRefGoogle Scholar
  117. Roosens NHCJ, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 13:208–215PubMedCrossRefGoogle Scholar
  118. Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301PubMedGoogle Scholar
  119. Salt DE, Prince RC, Pickering JI, Raskin I (1995) Mechanism of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433PubMedGoogle Scholar
  120. Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130CrossRefGoogle Scholar
  121. Sarwar N, Saifullah MSS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90:925–937PubMedGoogle Scholar
  122. Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392PubMedCrossRefGoogle Scholar
  123. Scheirs J, Vandevyvere I, Wollaert K, Blust R, De Bruyn L (2006) Plant-mediated effects of heavy metal pollution on host choice of a grass miner. Environ Pollut 143:138–145PubMedCrossRefGoogle Scholar
  124. Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langen-feld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898PubMedCrossRefGoogle Scholar
  125. Schwab AP, He YH, Banks MK (2005) The influence of organic ligands on the retention of lead in soil. Chemosphere 61:856–866PubMedCrossRefGoogle Scholar
  126. Schwartz C, Morel JL, Saumier S, Whiting SN, Baker AJM (1999) Root development of the zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil. Plant Soil 208:103–115CrossRefGoogle Scholar
  127. Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35CrossRefGoogle Scholar
  128. Solís-Domínguez FA, González-Chávez MC, Garrillo-González R, Rodríguez-Vázquez R (2007) Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. J Hazard Mater 141:630–636PubMedCrossRefGoogle Scholar
  129. Sun Q, Ye ZH, Wang XR, Wong MH (2005) Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and Pb accumulator. Phytochemistry 66:2549–2556PubMedCrossRefGoogle Scholar
  130. Sun Q, Ye ZH, Wang XR, Wong MH (2007a) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol 164:1489–1498PubMedCrossRefGoogle Scholar
  131. Sun RL, Zhou QX, Sun FH, Jin CX (2007b) Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Environ Exp Bot 60:468–476CrossRefGoogle Scholar
  132. Sun YB, Zhou QX, Wang L, Liu WT (2009) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mater 161:808–814PubMedCrossRefGoogle Scholar
  133. Tang YT, Qiu RL, Zeng XW, Fang XH, Yu FM, Zhou XY, Wu YD (2009a) Zn and Cd hyperaccumulating characteristics of Picris divaricata Vant. Int J Environ Pollut 38:26–38CrossRefGoogle Scholar
  134. Tang YT, Qiu RL, Zeng XW, Ying RR, Yu FM, Zhou XY (2009b) Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environ Exp Bot 66:126–134CrossRefGoogle Scholar
  135. Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R (2007) Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Chemosphere 68:323–329PubMedCrossRefGoogle Scholar
  136. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996PubMedCrossRefGoogle Scholar
  137. Thomine S, Lelièvre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685–695PubMedCrossRefGoogle Scholar
  138. Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9PubMedCrossRefGoogle Scholar
  139. Ueno D, Ma JF, Iwashita T, Zhao FJ, McGrath SP (2005) Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR. Planta 221:928–936PubMedCrossRefGoogle Scholar
  140. Ueno D, Iwashita T, Zhao FJ, Ma JF (2008) Characterization of Cd translocation and identification of Cd form in xylem sap of the Cd-hyperaccumulator Arabidopsis halleri. Plant Cell Physiol 49:540–548PubMedCrossRefGoogle Scholar
  141. Uraguchi S, Mori S, Kuramata M, Kawasaki A, Arao T, Ishikawa S (2009) Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. J Exp Bot 60:2677–2688PubMedCrossRefGoogle Scholar
  142. Van der Vliet L, Peterson C, Hale B (2007) Cd accumulation in roots and shoots of durum wheat: the roles of transpiration rate and apoplastic bypass. J Exp Bot 58:2939–2947PubMedCrossRefGoogle Scholar
  143. Vázquez MD, BarcelóJ PC, Mádico J, Hatton P, Baker AJM, Cope GH (1992) Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J Plant Physiol 140:350–355CrossRefGoogle Scholar
  144. Verbruggen N, Hermans C, Schat H (2009a) Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372PubMedCrossRefGoogle Scholar
  145. Verbruggen N, Hermans C, Schat H (2009b) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776PubMedCrossRefGoogle Scholar
  146. Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312PubMedCrossRefGoogle Scholar
  147. Vogel-Mikuš K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242PubMedCrossRefGoogle Scholar
  148. Wang Z, Zhang YX, Huang ZB, Huang L (2008) Antioxidative response of metal accumulator and non-accumulator plants under cadmium stress. Plant Soil 310:137–149CrossRefGoogle Scholar
  149. Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clements S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281PubMedCrossRefGoogle Scholar
  150. Wei SH, Zhou QX (2006) Phytoremediation of cadmium-contaminated soils by Rorippa globosa using two-phase planting. Environ Sci Pollut Res Int 13:151–155PubMedCrossRefGoogle Scholar
  151. Wei SH, Zhou QX, Wang X, Kaisong Z, Guanlin G, Qiying Ma Lena (2005) A new Cd hyperaccumulator Solanum nigrum L. Chin Sci Bull 50:33–38CrossRefGoogle Scholar
  152. Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T (2010) Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 19:91–103PubMedCrossRefGoogle Scholar
  153. Wenzel WW, Jockwer F (1999) Accumulation of heavy metals in plants grown on mineralized soils of the Austrian Alps. Environ Pollut 104:145–155CrossRefGoogle Scholar
  154. Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excludor plants on serpentine soil. Environ Pollut 123:131–138PubMedCrossRefGoogle Scholar
  155. White PJ, Whiting SN, Baker AJM, Broadley MR (2002) Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens? New Phytol 153:201–207CrossRefGoogle Scholar
  156. Whiting SN, Leake JR, McGrath SP, Baker AJM (2000) Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol 145:199–210CrossRefGoogle Scholar
  157. Whiting SN, de Souza MP, Terry N (2001a) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150PubMedCrossRefGoogle Scholar
  158. Whiting SN, Leake JR, McGrath SP, Baker AJM (2001b) Assessment of Zn mobilization in the rhizosphere of Thlaspi caerulescens by bioassay with non-accumulator plants and soil extraction. Plant Soil 237:147–156CrossRefGoogle Scholar
  159. Williams LE, Mills RF (2005) P1B-ATPases – an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502PubMedCrossRefGoogle Scholar
  160. Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126PubMedCrossRefGoogle Scholar
  161. Wójcik M, Vangronsveld J, D’Haen J, Tukiendorf A (2005) Cadmium tolerance in Thlaspi caerulescens: II. Localization of cadmium in Thlaspi caerulescens. Environ Exp Bot 53:163–171Google Scholar
  162. Wu Q, Shigaki T, Williams KA, Han JS, Kim CK, Hirschi KD, Park S (2010) Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. J Plant Physiol. doi: 10.1016/j.jplph.2010.06.005
  163. Xiang C, Oliver DJ (1999) Glutathione and its central role in mitigating plant stress. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker Inc, New York, USA, pp 697–707CrossRefGoogle Scholar
  164. Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–574PubMedCrossRefGoogle Scholar
  165. Xing JP, Jiang RF, Ueno D, Ma JF, Schat H, McGrath SP, Zhao FJ (2008) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol 178:315–325PubMedCrossRefGoogle Scholar
  166. Yanai J, Zhao FJ, McGrath SP (2006) Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environ Pollut 139:167–175PubMedCrossRefGoogle Scholar
  167. Yang XE, Long XX, Ni WZ, Fu CX (2002) Sedum alfredii H.: a new Zn hyperaccumulating plant first found in China. Chin Sci Bull 47:1634–1637Google Scholar
  168. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189CrossRefGoogle Scholar
  169. Ying RR, Qiu RL, Tang YT, Hu PJ, Qiu H, Chen HR, Shi TH, Morel JL (2010) Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. J Plant Physiol 167:81–87PubMedCrossRefGoogle Scholar
  170. Zeng XW, Ma LQ, Qiu RL, Tang YT (2009) Response of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environ Exp Bot 66:242–248CrossRefGoogle Scholar
  171. Zhang H, Jenning A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534PubMedCrossRefGoogle Scholar
  172. Zhang Z, Gao X, Qiu B (2008) Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead. Phytochemistry 69:911–918PubMedCrossRefGoogle Scholar
  173. Zhang ZC, Chen BX, Qiu BS (2010) Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants. Plant Cell Environ 33:1248–1255PubMedCrossRefGoogle Scholar
  174. Zhao H, Yang H (2008) Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis. Rehd Sci Hortic 116:442–447CrossRefGoogle Scholar
  175. Zhao FJ, Hamon RE, McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151:613–620CrossRefGoogle Scholar
  176. Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53:535–546PubMedCrossRefGoogle Scholar
  177. Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654PubMedCrossRefGoogle Scholar
  178. Zhou WB, Qiu BS (2005) Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci 169:737–745CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rong-Liang Qiu
    • 1
    • 2
    Email author
  • Ye-Tao Tang
    • 1
    • 2
  • Xiao-Wen Zeng
    • 3
  • Palaniswamy Thangavel
    • 1
  • Lu Tang
    • 1
  • Yuan-Yuan Gan
    • 1
  • Rong-Rong Ying
    • 1
  • Shi-Zhong Wang
    • 1
    • 2
  1. 1.School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation TechnologyGuangzhouPeople’s Republic of China
  3. 3.School of Public HealthSun Yat-sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations