An Algorithm for Parallel Tree-Shaped Bayesian Network Construction

  • Mieczysław A. Kłopotek
  • Justin Lindsey
Part of the Studies in Computational Intelligence book series (SCI, volume 369)


The paper presents the way that Tree-shaped Bayesian network generation program has been developed for a share-nothing parallel machine. We point at the changes in Chow/Liu [2] algorithm that are possible within a parallel machine environment.


Bayesian networks machine learning parallel computation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chow, C., Wagner, T.: Consistency of an estimate of tree-dependent probability distribution. IEEE Transactions on Information Theory 18, 369–371 (1973)CrossRefGoogle Scholar
  2. 2.
    Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory 14(3), 462–467 (1968)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Kłopotek, M.A.: A new bayesian tree learning method with reduced time and space complexity. Fundamenta Informaticae 49(4), 349–367 (2002)MathSciNetMATHGoogle Scholar
  4. 4.
    Kłopotek, M.A.: A new space-saving bayesian tree construction method for high dimensional data. Demonstratio Mathematica 35(3), 671–684 (2002)Google Scholar
  5. 5.
    Meila, M.: An Accelerated Chow and Liu Algorithm: Fitting Tree Distributions to High-Dimensional Sparse Data. In: Proceedings of the Sixteenth International Conference on Machine Learning, ICML 1999, pp. 249–257. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  6. 6.
    Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. The MIT Press, Cambridge (2001)MATHGoogle Scholar
  7. 7.
    Valiveti, R.S., Oommen, B.J.: The use of chi-squared statistics in determining dependence tree, technical report scs-tr-153, School of Computer Science,Carleton University, ottawa, ontario (March 1989)Google Scholar
  8. 8.
    Valiveti, R.S., Oommen, B.J.: On using the chi-squared metric for determining stochastic dependence. Pattern Recognition 25(11), 1389–1400 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mieczysław A. Kłopotek
    • 1
    • 2
  • Justin Lindsey
    • 2
  1. 1.Institute of Computer SciencePolish Academy of SciencesWarszawaPoland
  2. 2.Netezza Corporation (an IBM Company)USA

Personalised recommendations