Skip to main content

Generate Vision in Blind People Using Suitable Neuroprosthesis Implant of BIOMEMS in Brain

  • Conference paper

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 193))

Abstract

For Human beings, image processing occurs in the occipital lobe of the brain. The brain signals that are generated for the image processing is universal for all humans. Generally, the visually impaired people lose sight because of severe damage to only the eyes (natural photoreceptors) but the occipital lobe is still working. In this paper, we discuss a technique for generating partial vision to the blind by utilizing electrical photoreceptors to capture image, process the image using edge & motion detection adaptive VLSI network that works on the principle of bug fly’s visual system, convert it into digital data and wirelessly transmit it to a BioMEMS implanted into the occipital lobe of brain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yakovleff, A.J.S., Moini, A.: Motion Perception using Analog VLSI. Analog Integrated Circuits & Signal Processing 15(2), 183–200 (1998) ISSN:0925-1030

    Google Scholar 

  2. Mojarradi, M.: Miniaturized Neuroprosthesis Suitable for Implantation into Brain. IEEE Transaction on Neural Systems & Rehabilitation Engineering (March 2003)

    Google Scholar 

  3. Rangayanan, R.M.: Visual Evoked Potential ”Biomedical Signal Processing Analysis. A Case Study Approach”. IEEE Press, Los Alamitos

    Google Scholar 

  4. Sobey, P.J., Horridge, G.A.: Implementation of Template Model For Vision. Proc. R. Soc. Lond. B 240(1298), 211–229 (1990), doi:10.1098/rspb.1990.0035

    Article  Google Scholar 

  5. Nguyen, C.T.-C.: MEMS Technology for Timing and Frequency Control. Dept. of Electrical Engineering and Computer Science

    Google Scholar 

  6. Schmidt, S., Horch, K., Normann, R.: Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue. Journal of Biomedical Materials Research (November 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reddy, B.V., Swamy, Y.S.K., Usha, N. (2011). Generate Vision in Blind People Using Suitable Neuroprosthesis Implant of BIOMEMS in Brain. In: Abraham, A., Mauri, J.L., Buford, J.F., Suzuki, J., Thampi, S.M. (eds) Advances in Computing and Communications. ACC 2011. Communications in Computer and Information Science, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22726-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22726-4_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22725-7

  • Online ISBN: 978-3-642-22726-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics