Skip to main content

Abstract

What happens when distributed sources of information (agents) hold and acquire information locally, and have to communicate with neighbouring agents in order to refine their hypothesis regarding the actual global state of this environment? This question occurs when it is not possible (e. g. for practical or privacy concerns) to collect observations and knowledge, and centrally compute the resulting theory. In this paper, we assume that agents are equipped with full clausal theories and individually face abductive tasks, in a globally consistent environment. We adopt a learner/critic approach. We present the Multi-agent Abductive Reasoning System (MARS), a protocol guaranteeing convergence to a situation “sufficiently” satisfying as far as consistency of the system is concerned. Abduction in a full clausal theory has however already a high computational cost in centralized settings, which can become much worse with arbitrary distributions. We thus discuss ways to use knowledge about each agent’s theory language to improve efficiency. We then present some first experimental results to assess the impact of those refinements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.-C., Simon, L.: Distributed reasoning in a peer-to-peer setting: Application to the semantic web. J. Artif. Intell. Res (JAIR) 25, 269–314 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Alberti, M., Gavanelli, M., Lamma, E.: Runtime addition of integrity constraints in an abductive proof procedure. In: Hermenegildo, M.V., Schaub, T. (eds.) ICLP (Technical Communications), LIPIcs, vol. 7, pp. 4–13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

    Google Scholar 

  3. Amir, E., McIlraith, S.A.: Partition-based logical reasoning for first-order and propositional theories. AI 162(1-2), 49–88 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Bourgne, G., Hette, G., Maudet, N., Pinson, S.: Hypotheses refinement under topological communication constraints. In: AAMAS, IFAAMAS, p. 239 (2007)

    Google Scholar 

  5. Bourgne, G., Inoue, K., Maudet, N.: Abduction of distributed theories through local interactions. In: Proc. of the 19th European Conference on Artificial Intelligence, ECAI 2010 (August 2010)

    Google Scholar 

  6. Ciampolini, A., Lamma, E., Mello, P., Toni, F., Torroni, P.: Cooperation and competition in ALIAS: a logic framework for agents that negotiate. Annals of Math. and AI 37(1–2), 65–91 (2003)

    MATH  Google Scholar 

  7. Inoue, K.: Linear resolution for consequence finding. Artif. Intell. 56(2-3), 301–353 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating abductive hypotheses using an em algorithm on bdds. In: Proc. of IJCAI 2009, pp. 810–815 (2009)

    Google Scholar 

  9. Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic programming. In: Handbook of Logic in Artificial Intel. and Logic Progr., vol. 5, pp. 234–324. Oxford Univ. Press, Oxford (1998)

    Google Scholar 

  10. Kakas, A.C., Mancarella, P.: Database updates through abduction. In: Proc. of VLDB 1990, pp. 650–661. Morgan Kaufmann Pub., San Francisco (1990)

    Google Scholar 

  11. Letz, R., Mayr, K., Goller, C.: Controlled integration of the cut rule into connection tableau calculi. JAR 13, 297–338 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ma, J., Russo, A., Broda, K., Clark, K.: DARE: a system for distributed abductive reasoning. JAAMAS 16-3, 271–297 (2008)

    Google Scholar 

  13. Muggleton, S.: Inverse entailment and progol. New Generation Comput. 13(3&4), 245–286 (1995)

    Article  Google Scholar 

  14. Nabeshima, H., Iwanuma, K., Inoue, K.: Solar: A consequence finding system for advanced reasoning. Autom. Reas. with Analytic Tableaux and Rel. Meth., 257–263 (2003)

    Google Scholar 

  15. Odell, J.J., Van Dyke Parunak, H., Bauer, B.: Representing agent interaction protocols in UML. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957, pp. 121–140. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bourgne, G., Inoue, K., Maudet, N. (2011). Towards Efficient Multi-agent Abduction Protocols. In: Dastani, M., El Fallah Seghrouchni, A., Hübner, J., Leite, J. (eds) Languages, Methodologies, and Development Tools for Multi-Agent Systems. LADS 2010. Lecture Notes in Computer Science(), vol 6822. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22723-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22723-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22722-6

  • Online ISBN: 978-3-642-22723-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics