Improving Energy Efficiency of Underwater Acoustic Sensor Networks Using Transmission Power Control: A Cross-Layer Approach

  • Sumi A. Samad
  • S. K. Shenoy
  • G. Santhosh Kumar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 192)


Underwater Acoustic Sensor Networks (UW-ASNs) have found a wide range of applications from ocean monitoring to military surveillance. The underwater environment is energy constrained and hence it is very important to improve the life expectancy of sensor nodes. In this paper we propose a new MAC protocol (RMAC-PC) which uses transmission power control to enhance the energy efficiency. The protocol is developed as an extension to the RMAC protocol which schedules the transmissions of control and data packets depending on the latency calculations. Here, we utilize a cross-layer interaction between the MAC and physical layers to compute the optimum transmit power based on inter-nodal distance.


Energy efficiency Underwater sensor networks MAC protocols Cross-layer design Acoustic communication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pompilli, D., Rutgers, Akyildiz, I.F.: Overview of Networking Protocols for Underwater Wireless Communications. IEEE Communications Magazine (January 2009 )Google Scholar
  2. 2.
    Akylidiz, F., Pompilli, D., Melodia, T.: Underwater Acoustic Sensor Networks: Research challenges. Ad Hoc Net. 3(3), 257–279 (2005)CrossRefGoogle Scholar
  3. 3.
    Kleinrock, L., Tobagi, F.A.: Packet switching in radio channels: part I carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Trans. on Commun. COM-23, 1400–1416 (1975)CrossRefzbMATHGoogle Scholar
  4. 4.
    Molins, M., Stojanovic, M.: Slotted FAMA: a MAC protocol for underwater acoustic networks. In: Proceedings of the IEEE OCEANS 2006 Asia Conference (2006)Google Scholar
  5. 5.
    Xie, P., Cui, J.-H.: Exploring Random Access and Handshaking Techniques in Large-Scale Underwater Wireless Acoustic Sensor Networks. In: MTS/IEEE Oceans 2006, Boston, MA (September 2006)Google Scholar
  6. 6.
    Park, M.K., Rodoplu, V.: UWAN-MAC: An Energy–Efficient MAC Protocol for Underwater Acoustic Wireless Sensor Networks. IEEE Journal Of Ocean Engineering 32(3) (July 2007)Google Scholar
  7. 7.
    Wu, S.-L., Tseng, Y.-C., Sheu, J.-P.: Intelligent Medium Access for Mobile Ad hoc networks with Busy Tones and Power Control. IEEE Journal on Selected Areas in Communications 18(9) (September 2000)Google Scholar
  8. 8.
    Xie, P., Cui, J.-H.: R-MAC: An Energy-Efficient MAC Protocol for Underwater Sensor Networks. In: Proceedings of International Conference on Wireless Algorithms, Systems, and Applications (WASA 2007), Chicago, Illinois, USA, August 1-3 (2007)Google Scholar
  9. 9.
    Waite, A.D.: Sonar for Practising Engineers, 3rd edn. (2002)Google Scholar
  10. 10.
    Urick, R.J.: Principles of Underwater Sound. McGraw-Hill, New York (1983)Google Scholar
  11. 11.
    Srivastava, V., Motani, M.: Cross-Layer Design:A Survey and the Road Ahead. IEEE Communications Magazine (December 2005)Google Scholar
  12. 12.
    Xie, P., Zhou, Z., Peng, Z., Yan, H., et al.: Aqua-Sim: An NS-2 Based Simulator for Underwater Sensor Networks. In: Underwater Sensor Networks Lab, University of Connecticut. OCEANS 2009, MTS/IEEE Biloxi - Marine Technology for Our Future: Global and Local Challenges (2009)Google Scholar
  13. 13.
    The Network Simulator – NS2,

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sumi A. Samad
    • 1
  • S. K. Shenoy
    • 2
  • G. Santhosh Kumar
    • 1
  1. 1.Cochin University of Science and TechnologyKochiIndia
  2. 2.Naval Physical and Oceanographic LaboratoryDRDOKochiIndia

Personalised recommendations